Repressed cells of Saccharomyces cerevisiae, subjected to inhibition of both RNA and protein synthesis, showed a pattern of membrane-bound and cytosol acid phosphatase to the external enzyme which seemed to be linked through a precursor-product relationship. Gel exclusion chromatography did not indicate clear differences between the isoenzymes. Moreover, centrifugation experiments in CsCl and precipitation with concanavalin A suggested that there were no acid phosphatase molecules devoid of carbohydrate. Membrane-bound invertase displayed a molecular weight and a carbohydrate to protein ratio smaller than those of the exocellular enzyme. The values of molecular weight and buoyant density of the membrane-bound enzyme were closer to those found for the cytosol invertase. The stability of the level of the soluble invertase detected in the cytoplasm under derepression conditions, or after RNA or protein synthesis inhibition was found to be only apparent and represented the result of an equilibrium between synthesis and degradation.