Increased renal secretion of norepinephrine and prostaglandin E2 during sodium depletion in the dog. 1980

J A Oliver, and J Pinto, and R R Sciacca, and P J Cannon

To determine whether vasoactive renal hormones modulate renal blood flow during alterations of sodium balance, simultaneous measurements of arterial and renal venous concentrations of norepinephrine and prostaglandin E2 (PGE2) and of plasma renin activity, as well as renal blood flow and systemic hemodynamics were carried out in 24 sodium-depleted and 28 sodium-replete anesthetized dogs. The mean arterial blood pressure of the sodium depleted dogs was not significantly different from that of the animals fed a normal sodium diet, but cardiac output was significantly lower (3.07 +/- 0.18 vs. 3.77 +/- 0.17 liters/min, mean +/- SEM; P < 0.01). Despite the higher total peripheral vascular resistance in the sodium-depleted dogs (46.1 +/- 2.9 vs. 37.0 +/- 2.1 arbitrary resistance U; P < 0.02), the renal blood flow and renal vascular resistance were not significantly different in the two groups. The arterial plasma renin activity and concentration of norepinephrine were higher in the sodium-depleted animals than in the controls; the arterial concentration of PGE2 was equal in both groups. The renal venous plasma renin activity was higher in the sodium-depleted dogs. Similarly, the renal venous norepinephrine concentration was higher in the sodium-depleted dogs than in the controls (457 +/- 44 vs. 196 +/- 25 pg/ml; P < 0.01); renal venous PGE2 concentration was also higher in the sodium depleted dogs (92 +/- 22 vs. 48 +/- 11 pg/ml; P < 0.01). Administration of indomethacin to five sodium-replete dogs had no effect on renal blood flow. In five sodium-depleted dogs indomethacin lowered renal blood flow from 243 +/- 19 to 189 +/- 30 ml/min (P < 0.05) and PGE2 in renal venous blood from 71 +/- 14 to 15 +/- 2 pg/ml (P < 0.02). The results indicate that moderate chronic sodium depletion, in addition to enhancing the activity of the renin-angiotensin system, also increases the activity of the renal adrenergic nervous system and increases renal PGE2 synthesis. In sodium-depleted dogs, inhibition of prostaglandin synthesis was associated with a significant decrease in renal blood flow. The results suggest that the renal blood flow is maintained during moderate sodium depletion by an effect of the prostaglandins to oppose the vasoconstrictor effects of angiotensin II and the renal sympathetic nervous system.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J A Oliver, and J Pinto, and R R Sciacca, and P J Cannon
December 1977, Schweizerische medizinische Wochenschrift,
J A Oliver, and J Pinto, and R R Sciacca, and P J Cannon
June 1979, The American journal of physiology,
J A Oliver, and J Pinto, and R R Sciacca, and P J Cannon
June 1973, The American journal of physiology,
J A Oliver, and J Pinto, and R R Sciacca, and P J Cannon
February 1976, The American journal of physiology,
J A Oliver, and J Pinto, and R R Sciacca, and P J Cannon
August 1990, Hypertension (Dallas, Tex. : 1979),
J A Oliver, and J Pinto, and R R Sciacca, and P J Cannon
January 1982, Clinical and experimental pharmacology & physiology,
J A Oliver, and J Pinto, and R R Sciacca, and P J Cannon
May 1970, Aerospace medicine,
J A Oliver, and J Pinto, and R R Sciacca, and P J Cannon
May 1967, Gastroenterology,
J A Oliver, and J Pinto, and R R Sciacca, and P J Cannon
February 1976, Circulation research,
J A Oliver, and J Pinto, and R R Sciacca, and P J Cannon
February 1987, European journal of pharmacology,
Copied contents to your clipboard!