An improved rat brain-tumor model. 1980

N Kobayashi, and N Allen, and N R Clendenon, and L W Ko

The widely used intracerebral tumor implantation method by freehand injection into parietal or hippocampal areas of the rat brain has proven inadequate for reliable experimental therapeutic studies. Problems include poor intracerebral growth yields and significant rates of spread to extracranial tissues, lungs, and spinal cord. Major variables have been examined experimentally on a model using nitrosourea-induced nervous system tumor cell lines in sygeneic rats. A rapid stereotaxic method greatly improved the consistency of tumor placement. The optimal site was found to be the caudate nucleus. The production of a spheroid intracerebral growth was further facilitated by the use of 1% agar in the cell suspension medium and by an injection volume of 10 mu1 containing at least 10(4) cells. Further improvements involved injection technique and flushing of the operative field. These modifications have resulted in a 99% to 100% yield of intracerebral growth, with a marked reduction in the number and size of extracranial extensions and with distant metastasis rates of 0% to 5%. These results have continually improved with further experience. The method is satisfactory for radiation and chemotherapeutic trials in which survival time as an index of tumor size may be used an an end point.

UI MeSH Term Description Entries
D008297 Male Males
D009362 Neoplasm Metastasis The transfer of a neoplasm from one organ or part of the body to another remote from the primary site. Metastase,Metastasis,Metastases, Neoplasm,Metastasis, Neoplasm,Neoplasm Metastases,Metastases
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D009442 Neurilemmoma A neoplasm that arises from SCHWANN CELLS of the cranial, peripheral, and autonomic nerves. Clinically, these tumors may present as a cranial neuropathy, abdominal or soft tissue mass, intracranial lesion, or with spinal cord compression. Histologically, these tumors are encapsulated, highly vascular, and composed of a homogenous pattern of biphasic fusiform-shaped cells that may have a palisaded appearance. (From DeVita Jr et al., Cancer: Principles and Practice of Oncology, 5th ed, pp964-5) Neurinoma,Schwannoma,Schwannomatosis, Plexiform,Neurilemoma,Neurilemmomas,Neurilemomas,Neurinomas,Plexiform Schwannomatoses,Plexiform Schwannomatosis,Schwannomas
D009607 Nitrosourea Compounds A class of compounds in which the core molecule is R-NO, where R is UREA. Compounds, Nitrosourea
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002421 Caudate Nucleus Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain. Caudatus,Nucleus Caudatus,Caudatus, Nucleus,Nucleus, Caudate
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell

Related Publications

N Kobayashi, and N Allen, and N R Clendenon, and L W Ko
February 2017, Proceedings of SPIE--the International Society for Optical Engineering,
N Kobayashi, and N Allen, and N R Clendenon, and L W Ko
April 1974, Toxicology and applied pharmacology,
N Kobayashi, and N Allen, and N R Clendenon, and L W Ko
August 2001, Journal of neuroscience methods,
N Kobayashi, and N Allen, and N R Clendenon, and L W Ko
January 2012, Methods in molecular biology (Clifton, N.J.),
N Kobayashi, and N Allen, and N R Clendenon, and L W Ko
January 2024, PeerJ. Computer science,
N Kobayashi, and N Allen, and N R Clendenon, and L W Ko
June 2010, Cancer biology & therapy,
N Kobayashi, and N Allen, and N R Clendenon, and L W Ko
January 1981, Journal of neurology,
N Kobayashi, and N Allen, and N R Clendenon, and L W Ko
November 1982, Neurosurgery,
N Kobayashi, and N Allen, and N R Clendenon, and L W Ko
May 1979, Journal of cancer research and clinical oncology,
N Kobayashi, and N Allen, and N R Clendenon, and L W Ko
March 2002, Chinese medical journal,
Copied contents to your clipboard!