Rapid hyperpolarization of rat skeletal muscle induced by insulin. 1981

K Zierler, and E M Rogus

It has been proposed that the increase produced by insulin in electrical potential differences across membranes of target cells may be a mechanism by which the cell surface insulin-receptor complex causes at least some of the metabolic effects of insulin. If insulin-induced hyperpolarization is a transducer of common effector responses it must precede those responses. The problem has not been addressed previously, so that rapid responses to insulin have not been sought. Two methods were used. In one method, the bathing solution was changed rapidly so as to include insulin in supramaximal concentrations, and a series of measurements of membrane potentials. Er, were made. Insulin hyperpolarized by 9.4 mV within 1 min. In the other method, nanoliter amounts of highly concentrated insulin solution were ejected from a micropipette onto the surface of an impaled muscle fiber. In 21 out of 32 insulin injections, hyperpolarization occurred with 1 s; in 11 control injections there was no change. This is the most rapid response to insulin yet reported, and is consistent with the hypothesis that insulin-induced hyperpolarization may transduce effector responses.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

K Zierler, and E M Rogus
December 1993, Journal of cellular physiology,
K Zierler, and E M Rogus
December 1984, The American journal of physiology,
K Zierler, and E M Rogus
February 1989, The American journal of physiology,
K Zierler, and E M Rogus
September 1967, The Johns Hopkins medical journal,
K Zierler, and E M Rogus
August 1984, Biochimica et biophysica acta,
K Zierler, and E M Rogus
January 1981, The Japanese journal of physiology,
K Zierler, and E M Rogus
October 2001, American journal of physiology. Heart and circulatory physiology,
K Zierler, and E M Rogus
July 1993, The American journal of physiology,
K Zierler, and E M Rogus
March 1985, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!