The circumventricular organs and the central actions of angiotensin. 1981

J B Simpson

This review discusses the central nervous system actions of the circulating hormone, angiotensin II. Access of this peptide likely is limited to those central structures which lack the blood-brain barrier. Three of the circumventricular organs, the area postrema, the subfornical organ, and the organum vasculosum, have all been suggested to be sites of action for angiotensin within the brain. The area postrema is a site of pressor action of angiotensin in many species but not in the rat. The subfornical organ is a site where angiotensin provokes drinking, a pressor effect, and the secretion of vasopressin. The organum vasculosum and adjacent tissue has also been suggested to be a site for these three central effects of the peptide. Blood-borne angiotensin probably does not act at the same locus as does angiotensin applied to the brain via its ventricular system.

UI MeSH Term Description Entries
D009490 Neurosecretory Systems A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ. Neuroendocrine System,Neuroendocrine Systems,Neurosecretory System,System, Neuroendocrine,System, Neurosecretory,Systems, Neuroendocrine,Systems, Neurosecretory
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D002552 Cerebral Ventricles Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE). Foramen of Monro,Cerebral Ventricular System,Cerebral Ventricle,Cerebral Ventricular Systems,Monro Foramen,System, Cerebral Ventricular,Systems, Cerebral Ventricular,Ventricle, Cerebral,Ventricles, Cerebral,Ventricular System, Cerebral,Ventricular Systems, Cerebral
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004326 Drinking The consumption of liquids. Water Consumption,Water Intake,Drinkings
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin
D012504 Saralasin An octapeptide analog of angiotensin II (bovine) with amino acids 1 and 8 replaced with sarcosine and alanine, respectively. It is a highly specific competitive inhibitor of angiotensin II that is used in the diagnosis of HYPERTENSION. 1-Sar-8-Ala Angiotensin II,1-Sarcosine-8-Alanine Angiotensin II,(Sar(1),Ala(8))ANGII,(Sar1,Val5,Ala8)Angiotensin II,Angiotensin II, Sar(1)-Ala(8)-,Angiotensin II, Sarcosyl(1)-Alanine(8)-,Sar-Arg-Val-Tyr-Val-His-Pro-Ala,Saralasin Acetate,Saralasin Acetate, Anhydrous,Saralasin Acetate, Hydrated,1 Sar 8 Ala Angiotensin II,1 Sarcosine 8 Alanine Angiotensin II,Angiotensin II, 1-Sar-8-Ala,Angiotensin II, 1-Sarcosine-8-Alanine,Anhydrous Saralasin Acetate,Hydrated Saralasin Acetate

Related Publications

J B Simpson
September 2017, Histology and histopathology,
J B Simpson
November 1997, The American journal of physiology,
J B Simpson
October 1996, Frontiers in neuroendocrinology,
J B Simpson
January 1983, Clinical and experimental hypertension. Part A, Theory and practice,
J B Simpson
April 2018, Journal of anatomy,
J B Simpson
January 1992, Progress in brain research,
Copied contents to your clipboard!