Changes in the solution structure of yeast phenylalanine transfer ribonucleic acid associated with aminoacylation and magnesium binding. 1981

R O Potts, and N C Ford, and M J Fournier

The effect of aminoacylation on the structure of yeast phenylalanine tRNA was evaluated by laser light scattering. In these experiments, the translational diffusion coefficient (D20,w) of phenylalanyl-tRNA was monitored continuously during spontaneous deacylation in a variety of solution conditions. The results reveal that significant changes can occur in the hydrodynamic volume and electric charge as a consequence of aminoacylation but that the effects are magnesium dependent. At neutral pH, 20 degrees C, and 0.1 M salt, the D20,w value increased by 18% when deacylation occurred in 2--10 mM Mg2+ concentrations while no change in diffusivity was observed for tRNA deacylating in 0.5--1.0 mM Mg2+. The Mg2+ concentration dependence of the D20,w changes behaves in highly cooperative manner. The electric charges of aminoacyl-tRNA and nonacylated tRNA in 1 and 10 mM Mg2+ were estimated from the diffusive virial coefficients. In the higher Mg2+ conditions, aminoacyl-tRNA has a charge of 15 +/- 2e- while that of the nonacylated form is 10 +/- 2e-; both acylated and nonacylated tRNA have a charge of 11 +/- 4e- in 1 mM Mg2+. Taken together, the results indicate that aminoacylation permits the binding of additional Mg2+, resulting, in turn, in the formation of a more extended conformer of lower diffusivity and greater negative charge. The results also provide a possible explanation for several contradictory results in the literature.

UI MeSH Term Description Entries
D007834 Lasers An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum. Masers,Continuous Wave Lasers,Pulsed Lasers,Q-Switched Lasers,Continuous Wave Laser,Laser,Laser, Continuous Wave,Laser, Pulsed,Laser, Q-Switched,Lasers, Continuous Wave,Lasers, Pulsed,Lasers, Q-Switched,Maser,Pulsed Laser,Q Switched Lasers,Q-Switched Laser
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010652 Phenylalanine-tRNA Ligase An enzyme that activates phenylalanine with its specific transfer RNA. EC 6.1.1.20. Phenylalanyl T RNA Synthetase,Phe-tRNA Ligase,Phenylalanyl-tRNA Synthetase,Ligase, Phe-tRNA,Ligase, Phenylalanine-tRNA,Phe tRNA Ligase,Phenylalanine tRNA Ligase,Phenylalanyl tRNA Synthetase,Synthetase, Phenylalanyl-tRNA
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation

Related Publications

R O Potts, and N C Ford, and M J Fournier
July 1970, Angewandte Chemie (International ed. in English),
R O Potts, and N C Ford, and M J Fournier
April 1975, Archives of biochemistry and biophysics,
R O Potts, and N C Ford, and M J Fournier
May 1969, Zeitschrift fur Naturforschung. Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete,
R O Potts, and N C Ford, and M J Fournier
August 1970, Journal of molecular biology,
R O Potts, and N C Ford, and M J Fournier
December 1970, Journal of the American Chemical Society,
Copied contents to your clipboard!