pH variation of isotope effects in enzyme-catalyzed reactions. 2. Isotope-dependent step not pH dependent. Kinetic mechanism of alcohol dehydrogenase. 1981

P F Cook, and W W Cleland

Theory is developed for th pH dependence of isotope effects in a mechanism where a pH-dependent step precedes the isotope-sensitive bond-breaking step, and the rate of the latter varies only slightly with the state of protonation of the acid-base catalytic group on the enzyme. In such a mechanism, the isotope effects fall to 1.0 in the forward direction and to the equilibrium isotope effect in the reverse direction at pH values where the pH-sensitive step becomes totally rate limiting in the reverse direction. This model accurately describes the kinetics of yeast alcohol dehydrogenase, where V/Kacetone and the isotope effects on V2-propanol and V/K2-propanol decrease above a pK of 8.8 (both isotope effects becoming 1.0 at pH 10). The model also fits the kinetics of liver alcohol dehydrogenase, where Vcyclohexanol and V/Kcyclohexanol decrease below pKs of 6.2 and 7.1, and above pKs of 9.5 and 10.3. pKi trifluoroethanol decreases below a pK of 7.2, and above pK of 10.1, while pKi isobutyramide drops above a pK of 10.0. Vcyclohexanone decreases above a pK of 8.4 while V/Kcyclohexanone decreases above pKs of 8.8 and 9.7. Isotope effects on V/Kcyclohexanol and V/Kcyclohexanone decrease above identical pKs of 9.4 to values of 1 and 0.88, respectively, at pH 11. Comparison of a value of 2.5 for D(V/Kcyclohexanol) with an average value of 5.53 for T(V/Kcyclohexanol) allowed circulation of 6.3 as the intrinsic deuterium isotope effect. These data suggest that E-DPN-alcohol undergoes a proton transfer to the enzyme to give an EH-DPN-alkoxide complex which can lose its proton at high pH to give E-DPN-alkoxide and that both of these alkoxide complexes undergo hydride transfer to give DPNH and ketone. the alkoxide intermediate is not free to dissociate until it is protonated, either because it is coordinated to Zn or because the enzyme is in a closed catalytic configuration.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D003201 Computers Programmable electronic devices designed to accept data, perform prescribed mathematical and logical operations at high speed, and display the results of these operations. Calculators, Programmable,Computer Hardware,Computers, Digital,Hardware, Computer,Calculator, Programmable,Computer,Computer, Digital,Digital Computer,Digital Computers,Programmable Calculator,Programmable Calculators
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000429 Alcohol Oxidoreductases A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99). Carbonyl Reductase,Ketone Reductase,Carbonyl Reductases,Ketone Reductases,Oxidoreductases, Alcohol,Reductase, Carbonyl,Reductase, Ketone,Reductases, Carbonyl,Reductases, Ketone
D000577 Amides Organic compounds containing the -CO-NH2 radical. Amides are derived from acids by replacement of -OH by -NH2 or from ammonia by the replacement of H by an acyl group. (From Grant & Hackh's Chemical Dictionary, 5th ed) Amide

Related Publications

P F Cook, and W W Cleland
February 2000, Biochemistry,
P F Cook, and W W Cleland
November 2011, Journal of the American Chemical Society,
P F Cook, and W W Cleland
January 1989, Annual review of biochemistry,
P F Cook, and W W Cleland
April 2020, Molecules (Basel, Switzerland),
P F Cook, and W W Cleland
September 2015, Archives of biochemistry and biophysics,
P F Cook, and W W Cleland
February 2000, The Journal of organic chemistry,
P F Cook, and W W Cleland
January 1981, Annual review of biochemistry,
Copied contents to your clipboard!