Neural pathways involved in the hypothalamic integration of autonomic responses. 1981

T L Powley, and W Laughton

Recent mapping studies of hypothalamic and autonomic mechanisms have considerably extended our understanding of the anatomy of this system. The pattern of connections emerging from physiological, anatomical, and histochemical experiments suggests several conclusions about the functional organization of the system as well. Recent evidence supports the idea that the hypothalamic (and other limbic) areas involved in the control of ingestion and metabolism form the rostral pole of a longitudinally and hierarchically organized system that elaborates autonomic responses that influence the energy economy of the animal. Substantially the same pathways are apparently responsible for the modulation of ingestive behavior as well. This circuitry, the "visceromotor system" in Nauta's terminology, seems to weld afferent inputs, particularly those of the gustatory and visceral receptors, into a coordinated integrative control strategy influencing autonomic responses. In addition, the system seems to have unique tissue properties, at least at its two periventricularly located sites of integration with special access to both humorally and ventricularly circulated substrates. These nodes, the basomedial hypothalamus and the vagal complex of the medulla, seem to share similar biochemical specializations reflected in susceptibility to goldthioglucose toxicity, specific insulin binding, and susceptibility to alloxan diabetes.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008660 Metabolism The chemical reactions in living organisms by which energy is provided for vital processes and activities and new material is assimilated. Anabolism,Catabolism,Metabolic Concepts,Metabolic Phenomena,Metabolic Processes,Metabolic Phenomenon,Metabolic Process,Metabolism Concepts,Metabolism Phenomena,Process, Metabolic,Processes, Metabolic,Concept, Metabolic,Concept, Metabolism,Concepts, Metabolic,Concepts, Metabolism,Metabolic Concept,Metabolism Concept,Phenomena, Metabolic,Phenomena, Metabolism,Phenomenon, Metabolic
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D005247 Feeding Behavior Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals. Dietary Habits,Eating Behavior,Faith-based Dietary Restrictions,Feeding Patterns,Feeding-Related Behavior,Food Habits,Diet Habits,Eating Habits,Behavior, Eating,Behavior, Feeding,Behavior, Feeding-Related,Behaviors, Eating,Behaviors, Feeding,Behaviors, Feeding-Related,Diet Habit,Dietary Habit,Dietary Restriction, Faith-based,Dietary Restrictions, Faith-based,Eating Behaviors,Eating Habit,Faith based Dietary Restrictions,Faith-based Dietary Restriction,Feeding Behaviors,Feeding Pattern,Feeding Related Behavior,Feeding-Related Behaviors,Food Habit,Habit, Diet,Habit, Dietary,Habit, Eating,Habit, Food,Habits, Diet,Pattern, Feeding,Patterns, Feeding,Restrictions, Faith-based Dietary
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001341 Autonomic Nervous System The ENTERIC NERVOUS SYSTEM; PARASYMPATHETIC NERVOUS SYSTEM; and SYMPATHETIC NERVOUS SYSTEM taken together. Generally speaking, the autonomic nervous system regulates the internal environment during both peaceful activity and physical or emotional stress. Autonomic activity is controlled and integrated by the CENTRAL NERVOUS SYSTEM, especially the HYPOTHALAMUS and the SOLITARY NUCLEUS, which receive information relayed from VISCERAL AFFERENTS. Vegetative Nervous System,Visceral Nervous System,Autonomic Nervous Systems,Nervous System, Autonomic,Nervous System, Vegetative,Nervous System, Visceral,Nervous Systems, Autonomic,Nervous Systems, Vegetative,Nervous Systems, Visceral,System, Autonomic Nervous,System, Vegetative Nervous,System, Visceral Nervous,Systems, Autonomic Nervous,Systems, Vegetative Nervous,Systems, Visceral Nervous,Vegetative Nervous Systems,Visceral Nervous Systems

Related Publications

T L Powley, and W Laughton
January 2022, Frontiers in physiology,
T L Powley, and W Laughton
October 1971, Journal of comparative and physiological psychology,
T L Powley, and W Laughton
January 1984, Annual review of neuroscience,
T L Powley, and W Laughton
July 2017, Proceedings of the National Academy of Sciences of the United States of America,
T L Powley, and W Laughton
January 1995, Neuroscience and biobehavioral reviews,
T L Powley, and W Laughton
January 2013, Organogenesis,
Copied contents to your clipboard!