Surface characterization of virulent Treponema pallidum. 1980

J F Alderete, and J B Baseman

Characterization of the surface of Treponema pallidum was accomplished by [(125)I]lactoperoxidase-catalyzed iodination of intact organisms and sensitive radioimmunoprecipitation and gel electrophoresis technology. At least 11 outer membrane proteins with molecular weights ranging from 89,000 (89K) to 20K were identified, and all elicited high titers of antibody in experimentally infected rabbits. Proteins of 89.5K, 29.5K, and 25.5K previously implicated as ligands involved in attachment (J. B. Baseman and E. C. Hayes, J. Exp. Med. 151:573-586, 1980) were found to reside on the treponemal surface. Low levels of the 89.5K treponemal protein were released by high salt concentrations, whereas the remaining comigrating material was neither radioiodinated nor released with selective detergents. Other lower-molecular-weight (60K, 45K, and 30K) surface proteins were extracted with octyl glucoside detergent, suggesting their hydrophobic interaction with the external membrane. The molecular organization of surface proteins was studied by employing the cross-linker dithiobis(succinimidyl)-propionate, and data suggested the presence of a highly fluid envelope resulting in random collisions by the surface proteins. The biological function of the treponemal outer envelope proteins was evaluated using, as the indicator system, adherence of T. pallidum to monolayer cultures of eucaryotic cells. Trypsin treatment of motile, freshly harvested organisms decreased the extent of surface parasitism to normal rabbit testicular cells, reinforcing the idea of the proteinaceous nature and role of treponemal ligands for attachment. Other data supported functional and antigenic relatedness among the implicated ligands. Finally, brief periodate treatment of human epithelial (HEp-2) and normal rat testicular cells as well as casein-elicited rabbit peritoneal macrophages significantly reduced the extent of treponemal parasitism, suggesting a role of specific host membrane molecules as mediators of attachment.

UI MeSH Term Description Entries
D007104 Immune Adherence Reaction A method for the detection of very small quantities of antibody in which the antigen-antibody-complement complex adheres to indicator cells, usually primate erythrocytes or nonprimate blood platelets. The reaction is dependent on the number of bound C3 molecules on the C3b receptor sites of the indicator cell. Adherence Reaction, Immune,Adherence Reactions, Immune,Immune Adherence Reactions,Reaction, Immune Adherence,Reactions, Immune Adherence
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D014210 Treponema pallidum The causative agent of venereal and non-venereal syphilis as well as yaws.
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

J F Alderete, and J B Baseman
August 1973, Infection and immunity,
J F Alderete, and J B Baseman
December 1977, Infection and immunity,
J F Alderete, and J B Baseman
March 1976, Infection and immunity,
J F Alderete, and J B Baseman
January 1994, Infection and immunity,
J F Alderete, and J B Baseman
November 1975, Infection and immunity,
J F Alderete, and J B Baseman
March 1980, The Journal of experimental medicine,
J F Alderete, and J B Baseman
May 1981, Infection and immunity,
J F Alderete, and J B Baseman
March 1978, Infection and immunity,
J F Alderete, and J B Baseman
March 1992, The Journal of infectious diseases,
J F Alderete, and J B Baseman
April 1979, Infection and immunity,
Copied contents to your clipboard!