Peptide toxins from Conus geographus venom. 1981

W R Gray, and A Luque, and B M Olivera, and J Barrett, and L J Cruz

Three homologous toxic peptides which cause postsynaptic inhibition at the vertebrate neuromuscular junction have been purified from the venom of the marine snail Conus geographus. Their amino acid sequences are: (formula see text) The biologically active peptides are monomeric, with internal disulfide bonds.

UI MeSH Term Description Entries
D008978 Mollusk Venoms Venoms from mollusks, including CONUS and OCTOPUS species. The venoms contain proteins, enzymes, choline derivatives, slow-reacting substances, and several characterized polypeptide toxins that affect the nervous system. Mollusk venoms include cephalotoxin, venerupin, maculotoxin, surugatoxin, conotoxins, and murexine. Conus Venoms,Octopus Venoms,Snail Venoms,Conus Venom,Mollusc Venoms,Mollusk Venom,Octopus Venom,Snail Venom,Venom, Conus,Venom, Mollusk,Venom, Octopus,Venom, Snail,Venoms, Conus,Venoms, Mollusc,Venoms, Mollusk,Venoms, Octopus,Venoms, Snail
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012908 Snails Marine, freshwater, or terrestrial mollusks of the class Gastropoda. Most have an enclosing spiral shell, and several genera harbor parasites pathogenic to man. Snail
D020916 Conotoxins Peptide neurotoxins from the marine fish-hunting snails of the genus CONUS. They contain 13 to 29 amino acids which are strongly basic and are highly cross-linked by disulfide bonds. There are three types of conotoxins, omega-, alpha-, and mu-. OMEGA-CONOTOXINS inhibit voltage-activated entry of calcium into the presynaptic membrane and therefore the release of ACETYLCHOLINE. Alpha-conotoxins inhibit the postsynaptic acetylcholine receptor. Mu-conotoxins prevent the generation of muscle action potentials. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) alpha-Conotoxins,mu-Conotoxins,Conotoxin,alpha-Conotoxin,mu-Conotoxin,alpha Conotoxin,alpha Conotoxins,mu Conotoxin,mu Conotoxins

Related Publications

W R Gray, and A Luque, and B M Olivera, and J Barrett, and L J Cruz
January 1985, Toxicon : official journal of the International Society on Toxinology,
W R Gray, and A Luque, and B M Olivera, and J Barrett, and L J Cruz
March 1974, Toxicon : official journal of the International Society on Toxinology,
W R Gray, and A Luque, and B M Olivera, and J Barrett, and L J Cruz
October 1978, Archives of biochemistry and biophysics,
W R Gray, and A Luque, and B M Olivera, and J Barrett, and L J Cruz
August 1981, Neuroscience letters,
W R Gray, and A Luque, and B M Olivera, and J Barrett, and L J Cruz
December 1987, Biochemistry,
W R Gray, and A Luque, and B M Olivera, and J Barrett, and L J Cruz
December 1977, Life sciences,
W R Gray, and A Luque, and B M Olivera, and J Barrett, and L J Cruz
June 1997, Lancet (London, England),
W R Gray, and A Luque, and B M Olivera, and J Barrett, and L J Cruz
May 1990, FEBS letters,
W R Gray, and A Luque, and B M Olivera, and J Barrett, and L J Cruz
January 1988, Annual review of biochemistry,
W R Gray, and A Luque, and B M Olivera, and J Barrett, and L J Cruz
August 1985, The Journal of biological chemistry,
Copied contents to your clipboard!