Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin. 1981

C H Rhodes, and J I Morrell, and D W Pfaff

A cell-by-cell analysis of the magnocellular elements in hypothalami of fifty Long-Evans (normal) and Brattleboro (diabetes insipidus) rats was done using the unlabeled antibody enzyme technique (PAP) with primary antisera directed against oxytocin (OXY), vasopressin (ADH), and the neurophysins. The magnocellular neurons of the hypothalamus were found in the supraoptic (SON), paraventricular (PVN), and anterior commissural (ACN) nuclei, a number of accessory nuclei, and as individual cells in the anterior hypothalamic area. SON was divided by the optic tract into the principal part and retrochiasmatic SON. In retrochiasmatic SON a majority of the cells contained vasopressin. Within the principal part of SON oxytocin-producing cells tended to be found rostrally and dorsally, while the vasopressin cells were more common caudally and ventrally. PVN was divided into three subnuclei, the medial, lateral, and posterior subnuclei, on the basis of cellular morphology and peptide content. The magnocellular cells of the medial and lateral PVN were closely packed together and nearly round, while those of posterior PVN were more separated and fusiform in shape with their long axis running in a medio-lateral direction. Medial PVN consisted primarily of oxytocin-producing cells, while lateral PVN was formed by a core of vasopressin-producing cells with a rim of oxytocin cells. Posterior PVN contained largely oxytocin-producing cells. Both ADH and OXY cells were found in the accessory nuclei. In the Long-Evans rat the SON had, on the average, 1443 OXY and 3236 ADH cells; the PVN had 1174 OXY and 976 ADH cells; and the accessory magnocellular groups in the hypothalamus (including the ACN) had 1286 OXY and 552 ADH cells. The Brattleboro strain animal had similar numbers of cells in these nuclei. (The cells which contain ADH in normal animals were identified in the Brattleboro rat as large, neurophysin-negative cells.) Thus, a large fraction of the magnocellular oxytocin- and vasopressin-producing cells in the rat were located outside of the PVN and SON. One accessory cell group in particular, ACN, had 616 OXY cells, or about 50% as many as PVN. In each nucleus the sum of the numbers of OXY and ADH cells was approximately the number of neurophysin cells.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009481 Neurophysins Carrier proteins for OXYTOCIN and VASOPRESSIN. They are polypeptides of about 10-kDa, synthesized in the HYPOTHALAMUS. Neurophysin I is associated with oxytocin and neurophysin II is associated with vasopressin in their respective precursors and during transportation down the axons to the neurohypophysis (PITUITARY GLAND, POSTERIOR). Neurophysin,Neurophysin I,Neurophysin II,Neurophysin III,Oxytocin-Associated Neurophysin,Vasopressin-Associated Neurophysin,Neurophysin, Oxytocin-Associated,Neurophysin, Vasopressin-Associated,Oxytocin Associated Neurophysin,Vasopressin Associated Neurophysin
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C H Rhodes, and J I Morrell, and D W Pfaff
November 1998, Journal of neuroendocrinology,
C H Rhodes, and J I Morrell, and D W Pfaff
October 1971, The Biochemical journal,
C H Rhodes, and J I Morrell, and D W Pfaff
January 2015, Frontiers in neuroanatomy,
Copied contents to your clipboard!