Cell bodies of origin of reticular projections from the superior colliculus in the cat: an experimental study with the use of horseradish peroxidase as a tracer. 1978

K Kawamura, and T Hashikawa

By use of the retrograde axonal transport of horseradish peroxidase (HRP), the projection from the superior colliculus (SC) to the brain stem reticular formation (RF) was investigated in the cat. A 0.2-0.5 microliter of a 50% suspension of Sigma VI HRP was injected stereotactically in various portions of the pontomedullary RF, and, as a control to the injection to the RF, in the inferior olive or in the spinal cord. Labeled cells were found within and deep to the intermediate gray layer of the SC in the cats which survived for two or three days after HRP injection. The number of the labeled cells varied, according to the difference in the site of injection and the amount of injected HRP. About 400 labeled cells in twenty 50-micron sections, taken every fifth of the SC, occurred throughout its rostrocaudal extent, particularly in the case where the medial portion of the border zone of the nucleus reticularis pontis oralis and caudalis (R.p.o.-R.p.c. zone) or the border zone of the nucleus reticularis pontis caudalis and the gigantocellularis (R.p.c.-R.gc. zone) was heavily stained after three days of survival period. From 10 to 15% of these labeled cells were large in size (more than 40 micron in diameter), 20-30% were medium sized and the rest (60-70%) were small (10-25 micron). On the other hand, when HRP was placed in the inferior olive only eight cells were labeled in the SC, seven of which were small and medium-sized. When HRP was injected in the gray matter of C1-C3 level of the spinal cord, a total of 70 tectal cells (14, 42, and 14 were large, medium, and small cells, respectively) were observed to be labeled. The findings of the tectoreticular neurons are discussed and compared with those of the tectoolivary and the tectospinal neurons. Thus the three kinds of tectal neurons are located within and deep to the intermediate gray layer. The number of the labeled cells and the percentages of the collicular neurons of different sizes are obviously different among the three different projections. Topographic correlations between the SC and the RF could not be discerned in the present materials. These results were discussed in relation to possible influences of the tectoreticular neurons upon the extraocular and the spinal motoneurons.

UI MeSH Term Description Entries
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D012154 Reticular Formation A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network. Formation, Reticular,Formations, Reticular,Reticular Formations
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Kawamura, and T Hashikawa
December 1979, Okajimas folia anatomica Japonica,
K Kawamura, and T Hashikawa
November 1984, The Journal of comparative neurology,
Copied contents to your clipboard!