Conformational activation of the yeast phenylalanyl-tRNA synthetase catalytic site induced by tRNAPhe interaction: triggering of adenosine or CpCpA trinucleoside diphosphate aminoacylation upon binding of tRNAPhe lacking these residues. 1981

M Renaud, and H Bacha, and P Remy, and J P Ebel

Adenosine or CpCpA trinucleoside diphosphate can be aminoacylated by phenylalanyl-tRNA synthetase [L-phenylalanine:tRNAPhe ligase (AMP forming), EC 6.1.1.20] when the reaction takes place in the presence of tRNAPhe deprived of its 3' adenosine or pCpCpA terminus. This shows that, upon interaction with tRNA, a structural alteration of the enzyme's active site is achieved. This process may be a determining step in the specificity of the aminoacylation reaction.

UI MeSH Term Description Entries
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D010652 Phenylalanine-tRNA Ligase An enzyme that activates phenylalanine with its specific transfer RNA. EC 6.1.1.20. Phenylalanyl T RNA Synthetase,Phe-tRNA Ligase,Phenylalanyl-tRNA Synthetase,Ligase, Phe-tRNA,Ligase, Phenylalanine-tRNA,Phe tRNA Ligase,Phenylalanine tRNA Ligase,Phenylalanyl tRNA Synthetase,Synthetase, Phenylalanyl-tRNA
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

M Renaud, and H Bacha, and P Remy, and J P Ebel
April 1982, Nucleic acids research,
M Renaud, and H Bacha, and P Remy, and J P Ebel
June 1978, Nucleic acids research,
M Renaud, and H Bacha, and P Remy, and J P Ebel
July 2008, Structure (London, England : 1993),
M Renaud, and H Bacha, and P Remy, and J P Ebel
August 1987, Biochemistry,
M Renaud, and H Bacha, and P Remy, and J P Ebel
August 1982, Biochemistry,
M Renaud, and H Bacha, and P Remy, and J P Ebel
March 1976, Nucleic acids research,
M Renaud, and H Bacha, and P Remy, and J P Ebel
August 1978, Biochimica et biophysica acta,
M Renaud, and H Bacha, and P Remy, and J P Ebel
April 1978, European journal of biochemistry,
Copied contents to your clipboard!