Malate dehydrogenase: isolation from E. coli and comparison with the eukaryotic mitochondrial and cytoplasmic forms. 1981

R T Fernley, and S R Lentz, and R A Bradshaw

Escherichia coli malate dehydrogenase has been isolated in homogeneous form by a procedure employing chromatography on DEAE-cellulose, 5-'AMP-Sepharose, and Sephacryl-200. It is composed of two identical polypeptide chains each of Mr = 32 500. Like porcine mitochondrial malate dehydrogenase, it is devoid of tryptophan, but otherwise it is not particularly more similar in composition to one of the eukaryotic isozymes than to the other. However, amino-terminal sequence analysis of the first 36 residues shows remarkable similarity of the bacterial and mitochondrial enzymes (69% identical residues) in contrast to the cytoplasmic form (27%). The two porcine heart enzymes are identical in 24% of the positions compared. These results clearly establish that all three forms of malate dehydrogenase have evolved from a common precursor and that the prokaryotic and mitochondrial forms have retained sequences that are much closer to the ancestral one than the cytoplasmic enzyme. These findings appear to further substantiate the endosymbiotic hypothesis for the origin of the mitochondrion.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R T Fernley, and S R Lentz, and R A Bradshaw
April 1989, Biochemical Society transactions,
R T Fernley, and S R Lentz, and R A Bradshaw
December 1991, Plant physiology,
R T Fernley, and S R Lentz, and R A Bradshaw
October 1978, Archives of biochemistry and biophysics,
R T Fernley, and S R Lentz, and R A Bradshaw
June 1994, Biomedical and environmental sciences : BES,
R T Fernley, and S R Lentz, and R A Bradshaw
January 1987, Biochemistry,
R T Fernley, and S R Lentz, and R A Bradshaw
December 1979, Revista espanola de fisiologia,
R T Fernley, and S R Lentz, and R A Bradshaw
January 1970, Biochemical and biophysical research communications,
R T Fernley, and S R Lentz, and R A Bradshaw
May 1976, Biochimica et biophysica acta,
R T Fernley, and S R Lentz, and R A Bradshaw
May 1979, Biochemical and biophysical research communications,
Copied contents to your clipboard!