An endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae. 1981

D Schild, and H N Ananthaswamy, and R K Mortimer

A recessive temperature-sensitive mutation of Saccharomyces cerevisiae has been isolated and shown to cause an increase in ploidy in both haploids and diploids. Genetic analysis revealed that the strain carrying the mutation was an aa diploid, although MNNG mutagenesis had been done on an a haploid strain. When the mutant strain was crossed with an alpha alpha diploid and the resultant tetraploid sporulated, some of the meiotic progeny of this tetraploid were themselves tetraploid, as shown by both genetic analysis and DNA measurements, instead of diploid as expected of tetraploid meiosis. The ability of these tetraploids to continue to produce tetraploid meiotic progeny was followed for four generations. Homothallism was excluded as a cause of the increase in ploidy; visual pedigree analysis of spore clones to about the 32-cell stage failed to reveal any zygotes, and haploids that diploidized retained their mating type. An extra round of meiotic DNA synthesis was also considered and excluded. It was found that tetraploidization was independent of sporulation temperature, but was dependent on the temperature of germination and the growth of the spores. Increase in ploidy occurred when the spores were germinated and grown at 30 degrees, but did not occur at 23 degrees. Two cycles of sporulation and growth at 23 degrees resulted in haploids, which were shown to diploidize within 24 hr when grown at 30 degrees. Visual observation of the haploid cells incubated at 36 degrees revealed a cell-division-cycle phenotype characteristic of mutations that affect nuclear division; complementation analysis demonstrated that the mutation, cdc31-2, is allelic to cdc31-1, a mutation isolated by Hartwell et al. (1973) and characterized as causing a temperature-sensitive arrest during late nuclear division. The segregation of cdc31-2 in heterozygous diploids was 2:2 and characteristic of a noncentromere-linked gene.

UI MeSH Term Description Entries
D008769 Methylnitronitrosoguanidine A nitrosoguanidine derivative with potent mutagenic and carcinogenic properties. Methylnitrosonitroguanidine,Nitrosomethylnitroguanidine,Nitrosonitromethylguanidine,MNNG,N-Methyl-N'-nitro-N-nitrosoguanidine,N Methyl N' nitro N nitrosoguanidine
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011003 Ploidies The degree of replication of the chromosome set in the karyotype. Ploidy
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005808 Genes, Recessive Genes that influence the PHENOTYPE only in the homozygous state. Conditions, Recessive Genetic,Genetic Conditions, Recessive,Recessive Genetic Conditions,Condition, Recessive Genetic,Gene, Recessive,Genetic Condition, Recessive,Recessive Gene,Recessive Genes,Recessive Genetic Condition
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

D Schild, and H N Ananthaswamy, and R K Mortimer
June 1974, Bacteriological reviews,
D Schild, and H N Ananthaswamy, and R K Mortimer
January 1994, Methods in cell biology,
D Schild, and H N Ananthaswamy, and R K Mortimer
February 1987, Journal of bacteriology,
D Schild, and H N Ananthaswamy, and R K Mortimer
May 1993, Yeast (Chichester, England),
D Schild, and H N Ananthaswamy, and R K Mortimer
October 1992, Annals of the New York Academy of Sciences,
D Schild, and H N Ananthaswamy, and R K Mortimer
February 2003, Eukaryotic cell,
D Schild, and H N Ananthaswamy, and R K Mortimer
March 1972, Journal of bacteriology,
D Schild, and H N Ananthaswamy, and R K Mortimer
October 1996, Journal of biotechnology,
D Schild, and H N Ananthaswamy, and R K Mortimer
September 1988, Journal of general microbiology,
D Schild, and H N Ananthaswamy, and R K Mortimer
November 2001, Biotechnology and bioengineering,
Copied contents to your clipboard!