Selective in vitro transcription by purified yeast RNA polymerase II on cloned 2 micron DNA. 1981

P Ballario, and M Buongiorno-Nardelli, and F Carnevali, and E Di Mauro, and F Pedone

The in vitro transcription properties of purified yeast RNA polymerase II have been analyzed on prokaryotic plasmids (pBR322 and pBR313) and chimaeric plasmids bearing yeast 2 micron sequences (BTYP 1, BTYH 2 and BTYH 3). Conditions for selective transcription of the 2 micron DNA sequences in chimaeric plasmids have been determined. pBR322 and pBR313 are not transcribed by the purified RNA polymerase II when not bearing eukaryotic inserts. We show that the agarose gel electrophoretic analysis of ternary transcription complexes allows the localization of nascent RNA chains. The RNA produced has been visualized by electron microscopy (nascent RNA hybridization loops) and by gel electrophoretic analysis. All the observed properties are shared by RNA polymerase II purified by a conventional method (1) and by a rapid alternative procedure described herein. The peculiar properties of a partially purified form of RNA polymerase II are reported.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

P Ballario, and M Buongiorno-Nardelli, and F Carnevali, and E Di Mauro, and F Pedone
May 1982, Nucleic acids research,
P Ballario, and M Buongiorno-Nardelli, and F Carnevali, and E Di Mauro, and F Pedone
July 1981, Biochemical and biophysical research communications,
P Ballario, and M Buongiorno-Nardelli, and F Carnevali, and E Di Mauro, and F Pedone
August 1984, Biochemistry,
P Ballario, and M Buongiorno-Nardelli, and F Carnevali, and E Di Mauro, and F Pedone
July 1997, Methods (San Diego, Calif.),
P Ballario, and M Buongiorno-Nardelli, and F Carnevali, and E Di Mauro, and F Pedone
January 1980, Molecular & general genetics : MGG,
P Ballario, and M Buongiorno-Nardelli, and F Carnevali, and E Di Mauro, and F Pedone
January 1977, Biochemistry,
P Ballario, and M Buongiorno-Nardelli, and F Carnevali, and E Di Mauro, and F Pedone
June 1988, Genes & development,
P Ballario, and M Buongiorno-Nardelli, and F Carnevali, and E Di Mauro, and F Pedone
December 1983, European journal of biochemistry,
P Ballario, and M Buongiorno-Nardelli, and F Carnevali, and E Di Mauro, and F Pedone
January 1986, Molecular biology reports,
P Ballario, and M Buongiorno-Nardelli, and F Carnevali, and E Di Mauro, and F Pedone
February 1984, The Journal of biological chemistry,
Copied contents to your clipboard!