The gcr (glycolysis regulation) mutation of Saccharomyces cerevisiae. 1981

D Clifton, and D G Fraenkel

gcr is a mutation considerably decreasing the assayed amounts of most glycolysis enzymes in Saccharomyces cerevisiae (Clifton, D., Weinstock, S. B., and Fraenkel, D. G. (1978) Genetics 88, 1-11). We show here that although in the wild type strain the amounts of these enzymes do not greatly differ between cells from different media, in the gcr mutant strain most of the enzyme amounts are 5% or less, relative to wild type, from cells grown without sugars, but 20-50% from cells grown with sugars. Lower relative values were found for phosphoglycerate mutase and enolase. A corresponding alteration in the mutant in the intensities of several major protein bands could even be seen in stained gels after electrophoresis of crude extracts: the profiles were otherwise normal. Results of titration of phosphoglycerate kinase with antibody accorded with activity. Transfer of cells between the two types of media did not lead to a more rapid adjustment of enzyme amounts than expected from the steady state levels. gcr is not allelic to GPM (the gene for phosphoglycerate mutase) or to RNA1 (which affects transport of RNA from the nucleus). Translation of total RNA in a rabbit reticulocyte lysate gave a pattern of polypeptides similar to the in vivo one. Thus, gcr is likely to affect somehow mRNA synthesis or lifetime for a discrete number of proteins.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010735 Phosphoglycerate Kinase An enzyme catalyzing the transfer of a phosphate group from 3-phospho-D-glycerate in the presence of ATP to yield 3-phospho-D-glyceroyl phosphate and ADP. EC 2.7.2.3. Kinase, Phosphoglycerate
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D019344 Lactic Acid A normal intermediate in the fermentation (oxidation, metabolism) of sugar. The concentrated form is used internally to prevent gastrointestinal fermentation. (From Stedman, 26th ed) Lactate,2-Hydroxypropanoic Acid,2-Hydroxypropionic Acid,Ammonium Lactate,D-Lactic Acid,L-Lactic Acid,Propanoic Acid, 2-Hydroxy-, (2R)-,Propanoic Acid, 2-Hydroxy-, (2S)-,Sarcolactic Acid,2 Hydroxypropanoic Acid,2 Hydroxypropionic Acid,D Lactic Acid,L Lactic Acid,Lactate, Ammonium

Related Publications

D Clifton, and D G Fraenkel
August 1999, Journal of bacteriology,
D Clifton, and D G Fraenkel
January 1965, Archives internationales de physiologie et de biochimie,
D Clifton, and D G Fraenkel
December 2001, Biophysical chemistry,
D Clifton, and D G Fraenkel
January 2007, Critical reviews in biochemistry and molecular biology,
D Clifton, and D G Fraenkel
March 1992, Journal of biochemistry,
D Clifton, and D G Fraenkel
January 2012, Integrative biology : quantitative biosciences from nano to macro,
D Clifton, and D G Fraenkel
January 1986, Biochemistry,
D Clifton, and D G Fraenkel
February 1992, Yeast (Chichester, England),
D Clifton, and D G Fraenkel
June 1986, Genetics,
D Clifton, and D G Fraenkel
December 1980, Genetics,
Copied contents to your clipboard!