Assay of membrane complement receptors (CR1 and CR2) with C3b- and C3d-coated fluorescent microspheres. 1982

J D Lambris, and G D Ross

A sensitive and specific fluorescence assay for membrane complement (C) receptors (CR1 and CR2) was developed with purified C3b and C3d fragments coupled to fluorescent microspheres (0.9 mu diameter). C3-microspheres (C3-ms) bound to cells with low numbers of receptors that were undetectable by other assay techniques. Inhibition studies with anti-CR1 and anti-CR2 demonstrated that C3b-ms and C3d-ms bound exclusively to CR1 and CR2, respectively. Preparation of the C3-ms required only small amounts of partially purified C3 and no immunoglobulin or other C components. Once formed, the C3-ms were stable for up to 4 mo at 4 degrees C.

UI MeSH Term Description Entries
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D011309 Preservation, Biological The process of protecting various samples of biological material. Biological Preservation,Preservation, Biologic,Biologic Preservation
D011951 Receptors, Complement Molecules on the surface of some B-lymphocytes and macrophages, that recognize and combine with the C3b, C3d, C1q, and C4b components of complement. Complement Receptors,Complement Receptor,Complement Receptor Type 1,Receptor, Complement
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003176 Complement C3 A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase. C3 Complement,C3 Precursor,Complement 3,Complement C3 Precursor,Complement Component 3,Precursor-Complement 3,Pro-C3,Pro-Complement 3,C3 Precursor, Complement,C3, Complement,Complement, C3,Component 3, Complement,Precursor Complement 3,Precursor, C3,Precursor, Complement C3,Pro C3,Pro Complement 3
D003179 Complement C3b The larger fragment generated from the cleavage of COMPLEMENT C3 by C3 CONVERTASE. It is a constituent of the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb), and COMPLEMENT C5 CONVERTASES in both the classical (C4b2a3b) and the alternative (C3bBb3b) pathway. C3b participates in IMMUNE ADHERENCE REACTION and enhances PHAGOCYTOSIS. It can be inactivated (iC3b) or cleaved by various proteases to yield fragments such as COMPLEMENT C3C; COMPLEMENT C3D; C3e; C3f; and C3g. C3b Complement,C3bi,Complement 3b,Complement Component 3b,Inactivated C3b,iC3b,C3b, Complement,C3b, Inactivated,Complement, C3b,Component 3b, Complement
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D012397 Rosette Formation The in vitro formation of clusters consisting of a cell (usually a lymphocyte) surrounded by antigenic cells or antigen-bearing particles (usually erythrocytes, which may or may not be coated with antibody or antibody and complement). The rosette-forming cell may be an antibody-forming cell, a memory cell, a T-cell, a cell bearing surface cytophilic antibodies, or a monocyte possessing Fc receptors. Rosette formation can be used to identify specific populations of these cells. Immunocytoadherence,Formation, Rosette,Formations, Rosette,Immunocytoadherences,Rosette Formations

Related Publications

J D Lambris, and G D Ross
July 1985, The Journal of investigative dermatology,
J D Lambris, and G D Ross
January 1985, Archives of dermatological research,
J D Lambris, and G D Ross
January 1985, Archives of surgery (Chicago, Ill. : 1960),
J D Lambris, and G D Ross
January 1986, The Journal of experimental medicine,
J D Lambris, and G D Ross
December 1986, Seikagaku. The Journal of Japanese Biochemical Society,
J D Lambris, and G D Ross
July 1976, Bollettino dell'Istituto sieroterapico milanese,
J D Lambris, and G D Ross
December 1973, The Journal of clinical investigation,
J D Lambris, and G D Ross
January 1989, Advances in immunology,
J D Lambris, and G D Ross
December 2009, Pathology oncology research : POR,
Copied contents to your clipboard!