The phosphoenolpyruvate-dependent carbohydrate: phosphotransferase system enzymes II as chemoreceptors in chemotaxis of Escherichia coli K 12. 1981

J Lengeler, and A M Auburger, and R Mayer, and A Pecher

In Escherichia coli K12, eight substrate-specific, membrane-bound enzymes II of the PEP-dependent carbohydrate: phosphotransferase system (PTS), specific for hexoses, hexosamines and hexitols, have been characterised in a series of isogenic and constitutive strains. In such mutants, lacking all but one enzyme II, the transport and vectorial phosphorylation activities as well as the chemotactical response in capillary tube assays have been compared. According to the data obtained, all enzymes II not only are directly involved in the transport and vectorial phosphorylation of their substrates, but they have also a primary role as the chemoreceptors for these substrates: (1) Metabolism of the attractant beyond the phosphorylation step is not a pre-requisite to eliciting positive chemotaxis. (2) Mutants, having only one enzyme II react in the capillary tube assay only to substrates of this enzyme II, but not to substrates of the missing enzymes II. This holds for enzymes II consisting of one membrane-bound protein as well as for systems containing a soluble factor III (FIII). (3) The substrate specificities or affinities, whether tested by transport and chemotaxis assays in vivo or by phosphorylation tests in vitro, are in correspondence. (4) The activities of enzymes II, regulated in a complex way at the level of enzyme synthesis and activity and tested as above, are also in agreement, (5) Mutants lacking the soluble proteins enzyme I or HPr of the PTS no longer respond chemotactically to any substrate taken up and phosphorylated by enzymes II. It is concluded that in PTS enzymes II some functions required for transport and chemotaxis are identical. It is suggested furthermore, that the alternation of intrinsic membrane-bound proteins between a phosphorylated and a dephosphorylated state, rather than binding of the substrate to the enzyme II, is the decisive stimulus in the chemotaxis toward carbohydrates taken up by these transport systems.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010731 Phosphoenolpyruvate Sugar Phosphotransferase System The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-. Phosphoenolpyruvate Hexose Phosphotransferases,Phosphoenolpyruvate-Glycose Phosphotransferase System,Hexose Phosphotransferases, Phosphoenolpyruvate,Phosphoenolpyruvate Glycose Phosphotransferase System,Phosphotransferase System, Phosphoenolpyruvate-Glycose,Phosphotransferases, Phosphoenolpyruvate Hexose,System, Phosphoenolpyruvate-Glycose Phosphotransferase
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

J Lengeler, and A M Auburger, and R Mayer, and A Pecher
July 1974, Proceedings of the National Academy of Sciences of the United States of America,
J Lengeler, and A M Auburger, and R Mayer, and A Pecher
July 1982, Journal of bacteriology,
J Lengeler, and A M Auburger, and R Mayer, and A Pecher
January 2001, Journal of bacteriology,
J Lengeler, and A M Auburger, and R Mayer, and A Pecher
October 1984, European journal of biochemistry,
J Lengeler, and A M Auburger, and R Mayer, and A Pecher
August 1972, The Biochemical journal,
Copied contents to your clipboard!