Isolation of Physarum DNA segments that support autonomous replication in yeast. 1981

J A Gorman, and W F Dove, and N Warren

Hybrid plasmids containint the bacterial resistance-transfer factor pBR322 and the yeast leu2+ gene have been used to isolate DNA fragments of Physarum that are capable of initiating DNA replication in a yeast host. Five of forty hybrid plasmids containint Physarum sequences transform leu2- yeast to Leu+ at high frequency. The resulting Leu+ transformants are characterized by phenotypic instability. Supercoiled plasmid molecules containing pBR322 sequences can be detected in the transformed yeast, indicating that the transforming DNA replicates autonomously. Plasmid DNA isolated from Leu+ yeast can transform leuB bacteria. The hybrid plasmid recovered from the Leu+ bacterial transformants is identical to the original plasmid, indicating structural integrity is maintained during passage through the yeast host. These hybrid plasmids containing Physarum sequences have the same characteristics as those containing autonomously replicating yeast chromosomal sequences. As the temporal sequence of DNA replication is particularly accessible to study in Physarum plasmodia, the functional significance of these segments should be amenable to study.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D010804 Physarum A genus of protozoa, formerly also considered a fungus. Characteristics include the presence of violet to brown spores. Physarums
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011815 R Factors A class of plasmids that transfer antibiotic resistance from one bacterium to another by conjugation. R Factor,R Plasmid,R Plasmids,Resistance Factor,Resistance Factors,Factor, R,Factor, Resistance,Factors, R,Factors, Resistance,Plasmid, R,Plasmids, R
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014170 Transformation, Genetic Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome. Genetic Transformation,Genetic Transformations,Transformations, Genetic

Related Publications

J A Gorman, and W F Dove, and N Warren
August 1980, Proceedings of the National Academy of Sciences of the United States of America,
J A Gorman, and W F Dove, and N Warren
July 1972, Journal of molecular biology,
J A Gorman, and W F Dove, and N Warren
April 1973, Proceedings of the National Academy of Sciences of the United States of America,
J A Gorman, and W F Dove, and N Warren
March 1978, Nucleic acids research,
J A Gorman, and W F Dove, and N Warren
March 1979, Proceedings of the National Academy of Sciences of the United States of America,
J A Gorman, and W F Dove, and N Warren
November 1983, Proceedings of the National Academy of Sciences of the United States of America,
J A Gorman, and W F Dove, and N Warren
January 1969, Biochimica et biophysica acta,
J A Gorman, and W F Dove, and N Warren
December 1975, Journal of cellular physiology,
Copied contents to your clipboard!