Disorders of proximal nephron function. 1982

M G Cogan

The proximal nephron is responsible for reabsorbing 80 to 99 percent of several filtered solutes, including amino acids, glucose and bicarbonate. Separate, high-affinity sodium co-transport mechanisms are used. Increasing luminal concentration of each of these solutes stimulates its active transcellular reabsorption until there is saturation. Slightly less than half of the filtered chloride is reabsorbed, partly by passive mechanisms that are linked to the reabsorption of organic solutes and bicarbonate, as well as by less well defined independent cellular and/or paracellular mechanisms that appear to be sensitive to transepithelial osmotic pressure gradients. Proximal tubule reabsorption is isosmotic and isonatric, and about 50 to 60 percent of the filtered sodium and water in reabsorbed. Disorders or proximal nephron function include conditions in which luminal, cellular and/or peritubular factors affecting reabsorption are altered. Clinical disorders caused by modification of the luminal reabsorptive determinants include conditions in which tubular flow rate is increased or luminal composition is altered, as when non-reabsorbable solutes (mannitol) are filtered or when reabsorbable solutes (glucose) are filtered in concentrations exceeding their tubular transport capacity. Other disorders occur due to loss of affinity or capacity of the cellular active transport systems for specific solutes, such as amino acids (renal aminoacidurias), glucose (renal glycosurias) and bicarbonate (proximal renal tubular acidosis), or for all solutes (Fanconi syndrome). Finally, disorders due to changes in the peritubular factors affecting reabsorption include states of altered peritubular Starling forces or pH, which modify sodium chloride or sodium bicarbonate reabsorption, respectively.

UI MeSH Term Description Entries
D007674 Kidney Diseases Pathological processes of the KIDNEY or its component tissues. Disease, Kidney,Diseases, Kidney,Kidney Disease
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010281 Parathyroid Hormone A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates. Natpara,PTH (1-84),PTH(1-34),Parathormone,Parathyrin,Parathyroid Hormone (1-34),Parathyroid Hormone (1-84),Parathyroid Hormone Peptide (1-34),Hormone, Parathyroid
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000042 Absorption The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
D000141 Acidosis, Renal Tubular A group of genetic disorders of the KIDNEY TUBULES characterized by the accumulation of metabolically produced acids with elevated plasma chloride, hyperchloremic metabolic ACIDOSIS. Defective renal acidification of URINE (proximal tubules) or low renal acid excretion (distal tubules) can lead to complications such as HYPOKALEMIA, hypercalcinuria with NEPHROLITHIASIS and NEPHROCALCINOSIS, and RICKETS. Renal Tubular Acidosis,Renal Tubular Acidosis, Type I,Renal Tubular Acidosis, Type II,Type I Renal Tubular Acidosis,Type II Renal Tubular Acidosis,Acidosis, Renal Tubular, Type I,Acidosis, Renal Tubular, Type II,Autosomal Dominant Distal Renal Tubular Acidosis,Classic Distal Renal Tubular Acidosis,Distal Renal Tubular Acidosis,Proximal Renal Tubular Acidosis,RTA, Classic Type,RTA, Distal Type, Autosomal Dominant,RTA, Gradient Type,RTA, Proximal Type,Renal Tubular Acidosis 1,Renal Tubular Acidosis I,Renal Tubular Acidosis II,Renal Tubular Acidosis, Distal, Autosomal Dominant,Renal Tubular Acidosis, Proximal,Renal Tubular Acidosis, Proximal, with Ocular Abnormalities,Classic Type RTA,Classic Type RTAs,Gradient Type RTA,Gradient Type RTAs,Proximal Type RTA,Proximal Type RTAs,RTAs, Classic Type,RTAs, Gradient Type,RTAs, Proximal Type
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

M G Cogan
February 1982, The American journal of medicine,
M G Cogan
July 2013, Comprehensive Physiology,
M G Cogan
July 1960, The Journal of pediatrics,
M G Cogan
January 1977, Annual review of physiology,
M G Cogan
June 1983, The American journal of physiology,
M G Cogan
January 1985, Annual review of physiology,
M G Cogan
March 1988, Biochimica et biophysica acta,
M G Cogan
January 1974, Progress in biochemical pharmacology,
Copied contents to your clipboard!