Effects of free fatty acids, insulin, glucagon and adrenaline on ketone body production in humans. 1982

J M Miles, and M W Haymond, and J E Gerich

In normal human subjects, when plasma insulin, glucagon and growth hormone were 'clamped' at basal concentrations (by infusion of somatostatin plus replacement infusion of these hormones), infusion of Intralipid and heparin increased plasma free fatty acid (FFA) concentrations to approx. 1.3 mM, and ketone body production increased 4-5 fold to approx. 11 mumol . kg -1 . min-1. Hyperglucagonaemia did not further increase ketogenesis. In conditions of combined insulin and glucagon deficiency (by infusion of somatostatin without insulin and glucagon), administration of Intralipid and heparin increased plasma FFA concentrations to approx. 2.2 mM but a further increase in ketone body production did not accompany this increase. In these conditions hyperglucagonaemia increased ketogenesis by 2-3 fold the increment seen in control studies. Infusion of adrenaline (epinephrine) in conditions in which insulin secretion was not inhibited caused only a transient increase in plasma FFA concentrations and in ketone body production. These data indicate: (1) that in humans increased FFA availability can markedly augment ketogenesis in the absence of insulin deficiency and without hyperglucagonaemia; (2) that glucagon can increase ketone body production during insulin deficiency but not in its absence; and (3) that insulin deficiency may be accompanied by increased ketogenesis only because of a lack of its restraint on lipolysis and because of the action of glucagon. Glucagon may be important in determining the magnitude of ketone body production for a given degree of FFA availability and insulin deficiency, and may be necessary for attainment of maximal rates of ketogenesis. Adrenaline increases ketone body production in humans, but whether this is primarily due to a direct effect on the liver or is mediated through enhancement of lipolysis remains to be determined.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007657 Ketone Bodies The metabolic substances ACETONE; 3-HYDROXYBUTYRIC ACID; and acetoacetic acid (ACETOACETATES). They are produced in the liver and kidney during FATTY ACIDS oxidation and used as a source of energy by the heart, muscle and brain. Acetone Bodies,Bodies, Acetone,Bodies, Ketone
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J M Miles, and M W Haymond, and J E Gerich
November 1989, Metabolism: clinical and experimental,
J M Miles, and M W Haymond, and J E Gerich
July 1998, The American journal of physiology,
J M Miles, and M W Haymond, and J E Gerich
July 1984, The Biochemical journal,
J M Miles, and M W Haymond, and J E Gerich
June 1988, The American journal of physiology,
J M Miles, and M W Haymond, and J E Gerich
February 1970, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J M Miles, and M W Haymond, and J E Gerich
June 2005, Current diabetes reports,
J M Miles, and M W Haymond, and J E Gerich
August 1984, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
J M Miles, and M W Haymond, and J E Gerich
February 1991, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!