Identification and purification of a protein encoded by the human adenovirus type 2 transforming region. 1982

M Green, and K H Brackmann, and M A Cartas, and T Matsuo

The human adenovirus type 2 (Ad2) transforming genes are located in early regions E1a (map position 1.3 to 4.5) and E1b (map position 4.6 to 11.2). We have identified and purified to near homogeneity a major 20,000-molecular-weight (20K) protein and have shown that it is coded by E1b. Using an Ad2-transformed cell antiserum which contained antibody to E1b-coded proteins, we immunoprecipitated 53K and 19K proteins from the nucleoplasm and 53K, 19K, and 20K proteins from the cytoplasmic S-100 fraction of Ad2 productively infected and Ad2-transformed cells. The 19K protein was present in both the nucleoplasm and the cytoplasm, whereas the 20K protein was found only in the cytoplasm. The 53K and 19K proteins are known Ad2 E1b-coded proteins. The 20K protein was purified to near homogeneity in 20 to 50% yields by sequential DEAE-Sephacel chromatography and reverse-phase high-performance liquid chromatography. Purified 20K protein shares most of its methionine-labeled tryptic peptides with E1b-53K, as shown by reverse-phase high-performance liquid chromatography, and therefore is closely related to the 53K protein. The 19K protein does not appear to share tryptic peptides with either 20K or 53K protein. To provide more direct evidence that 20K protein is virus-coded, we translated E1b-specific mRNA in vitro. Both immunoprecipitation analysis and high-performance liquid chromatography purification of the translated product identified a 20K protein that has the same tryptic peptides as the 20K protein isolated from infected and from transformed cells. These findings suggest that the Ad2 20K protein is a primary translation product of an Ad2 E1b mRNA.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000260 Adenoviruses, Human Species of the genus MASTADENOVIRUS, causing a wide range of diseases in humans. Infections are mostly asymptomatic, but can be associated with diseases of the respiratory, ocular, and gastrointestinal systems. Serotypes (named with Arabic numbers) have been grouped into species designated Human adenovirus A-G. APC Viruses,APC Virus,Adenovirus, Human,Human Adenovirus,Human Adenoviruses
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

M Green, and K H Brackmann, and M A Cartas, and T Matsuo
September 1990, Virology,
M Green, and K H Brackmann, and M A Cartas, and T Matsuo
February 1980, Virology,
M Green, and K H Brackmann, and M A Cartas, and T Matsuo
September 1979, Journal of virology,
M Green, and K H Brackmann, and M A Cartas, and T Matsuo
January 1983, Biochimie,
M Green, and K H Brackmann, and M A Cartas, and T Matsuo
October 1974, Nature,
M Green, and K H Brackmann, and M A Cartas, and T Matsuo
June 2017, Virus research,
M Green, and K H Brackmann, and M A Cartas, and T Matsuo
December 2007, Journal of virology,
M Green, and K H Brackmann, and M A Cartas, and T Matsuo
April 1997, Journal of virology,
M Green, and K H Brackmann, and M A Cartas, and T Matsuo
September 2004, Archives of virology,
Copied contents to your clipboard!