Aminoacyl-tRNAs from Physarum polycephalum: patterns of codon recognition. 1982

D Hatfield, and M Rice, and C A Hession, and P W Melera

Isoacceptors of Physarum polycephalum Ala-, Arg-, Glu-, Gln-, Gly-, Ile-, Leu-, Lys-, Ser-, Thr-, and Val-tRNAs were resolved by reverse-phase chromatography and isolated, and their codon recognition properties were determined in a ribosomal binding assay. Codon assignments were made to most isoacceptors, and they are summarized along with those determined in other studies from Escherichia coli, yeasts, wheat germ, hymenoptera, Xenopus, and mammals. The patterns of codon recognition by isoacceptors from P. polycephalum are more similar to those of animals than to those of plants or lower fungi.

UI MeSH Term Description Entries
D010804 Physarum A genus of protozoa, formerly also considered a fungus. Characteristics include the presence of violet to brown spores. Physarums
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

D Hatfield, and M Rice, and C A Hession, and P W Melera
December 1998, Molecular and cellular biology,
D Hatfield, and M Rice, and C A Hession, and P W Melera
January 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
D Hatfield, and M Rice, and C A Hession, and P W Melera
January 1991, Progress in nucleic acid research and molecular biology,
D Hatfield, and M Rice, and C A Hession, and P W Melera
September 1974, Biochemistry,
D Hatfield, and M Rice, and C A Hession, and P W Melera
January 1979, Progress in nucleic acid research and molecular biology,
D Hatfield, and M Rice, and C A Hession, and P W Melera
March 1977, Biochimica et biophysica acta,
D Hatfield, and M Rice, and C A Hession, and P W Melera
January 1991, Nucleic acids symposium series,
D Hatfield, and M Rice, and C A Hession, and P W Melera
January 1975, Molekuliarnaia biologiia,
D Hatfield, and M Rice, and C A Hession, and P W Melera
January 1995, Methods in molecular biology (Clifton, N.J.),
D Hatfield, and M Rice, and C A Hession, and P W Melera
June 1980, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!