The effects of antidiuretic hormone and state of potassium balance on the renin-angiotensin system in rats with diabetes insipidus. 1982

E Fernández-Repollet, and M M Maldonado, and S Opava-Stitzer

1. The influence of ADH and the state of potassium balance on the renin-angiotensin system was studied in rats with hereditary diabetes insipidus (DI rats). 2. Plasma renin concentration in DI rats was higher than in control Long-Evans rats. 3. Spontaneous reversal of the hypokalaemia normally found in DI rats did not reduce plasma renin concentration (p.r.c.), suggesting that potassium deficiency does not contribute significantly to the elevation of p.r.c. in DI rats. Similarly, a low potassium diet failed to further increase p.r.c. in DI rats. 4. In contrast, the p.r.c. of DI rats was significantly diminished by a high potassium intake both in the presence and absence of ADH. A highly significant inverse correlation was found between p.r.c. and urinary potassium excretion in both ADH-treated and untreated DI rats on low, normal and high potassium diets. 5. Plasma renin concentration was significantly lower in ADH-treated than in untreated DI rats on a high potassium intake, suggesting that the inhibitory effects of ADH and potassium are additive. 6. ADH consistently reduced p.r.c. in DI rats independent of the state of potassium balance. 7. ADH and potassium may inhibit renin secretion via different mechanisms of action.

UI MeSH Term Description Entries
D007008 Hypokalemia Abnormally low potassium concentration in the blood. It may result from potassium loss by renal secretion or by the gastrointestinal route, as by vomiting or diarrhea. It may be manifested clinically by neuromuscular disorders ranging from weakness to paralysis, by electrocardiographic abnormalities (depression of the T wave and elevation of the U wave), by renal disease, and by gastrointestinal disorders. (Dorland, 27th ed) Hypopotassemia,Hypokalemias,Hypopotassemias
D008297 Male Males
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D003919 Diabetes Insipidus A disease that is characterized by frequent urination, excretion of large amounts of dilute URINE, and excessive THIRST. Etiologies of diabetes insipidus include deficiency of antidiuretic hormone (also known as ADH or VASOPRESSIN) secreted by the NEUROHYPOPHYSIS, impaired KIDNEY response to ADH, and impaired hypothalamic regulation of thirst.
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E Fernández-Repollet, and M M Maldonado, and S Opava-Stitzer
September 1974, European journal of pharmacology,
E Fernández-Repollet, and M M Maldonado, and S Opava-Stitzer
January 1981, Hypertension (Dallas, Tex. : 1979),
E Fernández-Repollet, and M M Maldonado, and S Opava-Stitzer
January 1980, Annales de l'anesthesiologie francaise,
E Fernández-Repollet, and M M Maldonado, and S Opava-Stitzer
November 1978, Neuropharmacology,
E Fernández-Repollet, and M M Maldonado, and S Opava-Stitzer
November 1977, General and comparative endocrinology,
E Fernández-Repollet, and M M Maldonado, and S Opava-Stitzer
January 1980, Problemy endokrinologii,
E Fernández-Repollet, and M M Maldonado, and S Opava-Stitzer
October 1974, The American journal of physiology,
E Fernández-Repollet, and M M Maldonado, and S Opava-Stitzer
January 1982, Annals of the New York Academy of Sciences,
E Fernández-Repollet, and M M Maldonado, and S Opava-Stitzer
January 1978, Klinische Wochenschrift,
E Fernández-Repollet, and M M Maldonado, and S Opava-Stitzer
January 1982, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!