Role of positive charge on the amino-terminal region of the signal peptide in protein secretion across the membrane. 1982

S Inouye, and X Soberon, and T Franceschini, and K Nakamura, and K Itakura, and M Inouye

The positively charged amino-terminal region of the signal peptide has been proposed to have an important role at an initial step of protein secretion across the membrane (loop model). To test this hypothesis, the charge on the amino-terminal region of the signal peptide of the prolipoprotein of the Escherichia coli outer membrane was altered by using synthetic oligonucleotides from +2 to +1, 0, and -1 by guided site specific mutagenesis of a plasmid DNA carrying an inducible lipoprotein gene. The wild-type sequence of this sectio, Met-Lys-Ala-Thr-Lys (+2), was thus changed to Met-Lys-Asp-Thr-Lys (I-1; +1), Met-Ala-Thr-Lys (I-2; +1), Met-Asp-Thr-Lys (I-3; 0), and Met-Glu-Asp-Thr-Lys (I-4; -1). After induction of lipoprotein production, cells were pulse labeled with [35S]methionine for 10 sec. The lipoprotein of I-1, I-2, and I-3 was assembled in the membrane, although the rates of lipoprotein production progressively decreased as the charge on the signal peptide became more negative. Conversely, in the case of I-4, only a small amount of lipoprotein assembled in the membrane while a large amount of glycerol-unmodified prolipoprotein accumulated in the cytoplasm. This soluble prolipoprotein was gradually and posttranslationally secreted across the membrane to be modified and assembled in the membrane. These results indicate that the positively charged amino-terminal region of the signal peptide plays an important role in efficient protein secretion across the membrane.

UI MeSH Term Description Entries
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011498 Protein Precursors Precursors, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

S Inouye, and X Soberon, and T Franceschini, and K Nakamura, and K Itakura, and M Inouye
May 1987, The Journal of biological chemistry,
S Inouye, and X Soberon, and T Franceschini, and K Nakamura, and K Itakura, and M Inouye
March 1990, The Journal of biological chemistry,
S Inouye, and X Soberon, and T Franceschini, and K Nakamura, and K Itakura, and M Inouye
February 1989, The Journal of biological chemistry,
S Inouye, and X Soberon, and T Franceschini, and K Nakamura, and K Itakura, and M Inouye
January 1994, Yi chuan xue bao = Acta genetica Sinica,
S Inouye, and X Soberon, and T Franceschini, and K Nakamura, and K Itakura, and M Inouye
January 1982, Annales de microbiologie,
S Inouye, and X Soberon, and T Franceschini, and K Nakamura, and K Itakura, and M Inouye
March 1990, Journal of bacteriology,
S Inouye, and X Soberon, and T Franceschini, and K Nakamura, and K Itakura, and M Inouye
November 1985, Cell,
S Inouye, and X Soberon, and T Franceschini, and K Nakamura, and K Itakura, and M Inouye
March 1984, The Journal of biological chemistry,
S Inouye, and X Soberon, and T Franceschini, and K Nakamura, and K Itakura, and M Inouye
August 1996, The Journal of biological chemistry,
S Inouye, and X Soberon, and T Franceschini, and K Nakamura, and K Itakura, and M Inouye
March 1989, Science (New York, N.Y.),
Copied contents to your clipboard!