Serum-free growth of normal and tumor mouse mammary epithelial cells in primary culture. 1982

W Imagawa, and Y Tomooka, and S Nandi

Freshly isolated normal and tumor mouse mammary epithelial cells embedded within a collagen gel matrix undergo sustained growth when cultured for as long as 3 wk in a serum-free medium composed of a 1:1 (vol/vol) mixture of Hepesbuffered Ham's F12 and Dulbecco's modified Eagle's medium supplemented with insulin, epidermal growth factor (EGF), transferrin, bovine serum albumin fraction V, and cholera toxin. Of these additives, only insulin, EGF, and albumin are required for the growth of most normal cells. Albumin is not always an absolute requirement for growth but greatly enhances it. Lithium has been found to stimulate the growth of normal cells and can replace EGF. The collagen matrix culture system allows sustained growth of primary cultures of both normal and neoplastic mammary epithelium in serum-free conditions. This serum-free system will be useful in identifying and investigating the role of hormones, growth factors, and nutritional factors in regulating the growth of mammary epithelial cells.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D008325 Mammary Neoplasms, Experimental Experimentally induced mammary neoplasms in animals to provide a model for studying human BREAST NEOPLASMS. Experimental Mammary Neoplasms,Neoplasms, Experimental Mammary,Experimental Mammary Neoplasm,Mammary Neoplasm, Experimental,Neoplasm, Experimental Mammary
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D001769 Blood The body fluid that circulates in the vascular system (BLOOD VESSELS). Whole blood includes PLASMA and BLOOD CELLS.
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture

Related Publications

W Imagawa, and Y Tomooka, and S Nandi
December 1994, In vitro cellular & developmental biology. Animal,
W Imagawa, and Y Tomooka, and S Nandi
August 1986, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
W Imagawa, and Y Tomooka, and S Nandi
October 1982, Cell biology international reports,
W Imagawa, and Y Tomooka, and S Nandi
June 1989, Proceedings of the National Academy of Sciences of the United States of America,
W Imagawa, and Y Tomooka, and S Nandi
February 1982, Experimental cell research,
W Imagawa, and Y Tomooka, and S Nandi
June 1980, In vitro,
W Imagawa, and Y Tomooka, and S Nandi
November 1992, The Journal of dairy research,
W Imagawa, and Y Tomooka, and S Nandi
April 1980, Proceedings of the National Academy of Sciences of the United States of America,
W Imagawa, and Y Tomooka, and S Nandi
January 1997, Experimental lung research,
Copied contents to your clipboard!