Thromboxane mediates acute pulmonary hypertension in sheep extracorporeal perfusion. 1982

M B Peterson, and P C Huttemeier, and W M Zapol, and E G Martin, and W D Watkins

We measured serial plasma concentrations of thromboxane B2 (TXB2), the stable metabolite of the putative pulmonary vasoconstrictor thromboxane A2 (TXA2), and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), the stable metabolite of the pulmonary vasodilator prostacyclin (PGI2) by double-antibody radioimmunoassay during partial venovenous bypass in 25 awake sheep. The onset of bypass caused mean pulmonary artery pressure (PAP) to increase from 16 +/- 1 to 28 +/- 2 mmHg at 12 +/- 2 min, due to an increase of pulmonary vascular resistance, followed by a return to control within 45 min. There was no systemic hypoxia. TXB2 increased simultaneously with the onset of pulmonary hypertension (PH) (236 +/- 36 to 700 +/- 120 pg/ml at 0 and 5 min) and peaked at 1,724 +/- 172 pg/ml 10 min after maximum PAP was achieved. Positive pulmonary artery-to-aortic differences of TXB2 were measured. 6-Keto-PGF1 alpha increased from 51 +/- 3 to 842 +/- 367 pg/ml at 35 min. PGF2 alpha was unchanged (130 +/- 45 pg/ml). PH, TXB2, and 6-keto-PGF1 alpha increases were blocked by pretreatment with indomethacin or ibuprofen. PH and TXB2 increases were prevented with an imidazole derivative. PH caused by a continuous infusion of an endoperoxide analog did not induce lung release of TXB2 or PGF2 alpha. We conclude that 1) transient pulmonary vasoconstriction is caused by thromboxane; 2) the lung is the primary site of thromboxane synthesis; and 3) bypass causes selective alterations in arachidonic acid metabolism rather than general activation of the cascade.

UI MeSH Term Description Entries
D006976 Hypertension, Pulmonary Increased VASCULAR RESISTANCE in the PULMONARY CIRCULATION, usually secondary to HEART DISEASES or LUNG DISEASES. Pulmonary Hypertension
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D011460 Prostaglandins F (9 alpha,11 alpha,13E,15S)-9,11,15-Trihydroxyprost-13-en-1-oic acid (PGF(1 alpha)); (5Z,9 alpha,11,alpha,13E,15S)-9,11,15-trihydroxyprosta-5,13-dien-1-oic acid (PGF(2 alpha)); (5Z,9 alpha,11 alpha,13E,15S,17Z)-9,11,15-trihydroxyprosta-5,13,17-trien-1-oic acid (PGF(3 alpha)). A family of prostaglandins that includes three of the six naturally occurring prostaglandins. All naturally occurring PGF have an alpha configuration at the 9-carbon position. They stimulate uterine and bronchial smooth muscle and are often used as oxytocics. PGF
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli
D013928 Thromboxane A2 An unstable intermediate between the prostaglandin endoperoxides and thromboxane B2. The compound has a bicyclic oxaneoxetane structure. It is a potent inducer of platelet aggregation and causes vasoconstriction. It is the principal component of rabbit aorta contracting substance (RCS). Rabbit Aorta Contracting Substance,A2, Thromboxane
D013929 Thromboxane B2 A stable, physiologically active compound formed in vivo from the prostaglandin endoperoxides. It is important in the platelet-release reaction (release of ADP and serotonin). B2, Thromboxane
D013931 Thromboxanes Physiologically active compounds found in many organs of the body. They are formed in vivo from the prostaglandin endoperoxides and cause platelet aggregation, contraction of arteries, and other biological effects. Thromboxanes are important mediators of the actions of polyunsaturated fatty acids transformed by cyclooxygenase. Thromboxane

Related Publications

M B Peterson, and P C Huttemeier, and W M Zapol, and E G Martin, and W D Watkins
May 1982, Circulation research,
M B Peterson, and P C Huttemeier, and W M Zapol, and E G Martin, and W D Watkins
December 1993, The Journal of thoracic and cardiovascular surgery,
M B Peterson, and P C Huttemeier, and W M Zapol, and E G Martin, and W D Watkins
January 1986, Clinical and investigative medicine. Medecine clinique et experimentale,
M B Peterson, and P C Huttemeier, and W M Zapol, and E G Martin, and W D Watkins
June 2001, Journal of applied physiology (Bethesda, Md. : 1985),
M B Peterson, and P C Huttemeier, and W M Zapol, and E G Martin, and W D Watkins
June 1977, Veterinarni medicina,
M B Peterson, and P C Huttemeier, and W M Zapol, and E G Martin, and W D Watkins
January 1965, Grudnaia khirurgiia (Moscow, Russia),
M B Peterson, and P C Huttemeier, and W M Zapol, and E G Martin, and W D Watkins
January 1983, Transactions - American Society for Artificial Internal Organs,
M B Peterson, and P C Huttemeier, and W M Zapol, and E G Martin, and W D Watkins
November 1990, Circulation,
M B Peterson, and P C Huttemeier, and W M Zapol, and E G Martin, and W D Watkins
September 2018, Journal of cardiovascular pharmacology and therapeutics,
M B Peterson, and P C Huttemeier, and W M Zapol, and E G Martin, and W D Watkins
January 1980, Advances in prostaglandin and thromboxane research,
Copied contents to your clipboard!