On the role of NADPH and glutathione in the catalytic mechanism of hepatic thyroxine 5'-deiodination. 1981

T Sato, and S Maruyama, and K Nomura

A possible metabolic linkage between hepatic thyroxine (T4) 5'-deiodination and the NADPH-glutathione (GSH) cycle was studied in rat liver. Supplementation of 1 mM NADPH to stocked liver homogenates in vitro produced 4 fold increase in 3, 5, 3'-triiodothyronine (T3) formation from T4, whereas the effect of 1 mM FMN, FDN, NAD, NADH, or GSH was relatively small. An exponential dose-response relation was obtained between NADPH and T3 generated. The dose-dependent increase in T3 formation on GSH was eliminated in the presence of 1 mM MADPH, and the additive effect of GSH to NADPH was not apparent in comparison with NADPH alone. Inhibition of T3 generation by graded doses of methylene blue was not affected by the presence of 5 mM GSH. Furthermore, metabolic changes in the hexose-monophosphate shunt were produced in male Wistar rats aged 5 w by treating them with fasting-refeeding (FF group), with the administration of insulin and glucose (IG group), with propylthiouracil (PTU group) and with T4 (T4 group). All these treatments significantly reduced hepatic T4 5'-deiodinase activity (P less than 0.01-0.001 vs control), while glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase (GSSG-R) activities were increased. Between generated T3 and G6PD or GSSG-R activity, an inverse correlation was noted (r = -0.802 and -0.933, P less than 0.001). No consistent relation was found between T4 5'-deiodinase activity and GSH or non-protein SH contents. The addition of 1 mM NADPH and GSH to the homogenates of FF, T4 and the control group stocked for 4 w at -20 degrees C, restored T4 5'-deiodinase activity from a level of 10% to 60% of the initial value, whereas the activity remained depressed in PTU (19%) and the IG group (37%). These results indicate that both GSH and NADPH are important cofactors of the T3 generating system, but NADPH is more rate-limiting and its effect appears to be rather direct, not mediated by GSH formation. It is possible that T4 5'-deiodinase may be one of the NADPH-dependent enzymes.

UI MeSH Term Description Entries
D007453 Iodide Peroxidase A hemeprotein that catalyzes the oxidation of the iodide radical to iodine with the subsequent iodination of many organic compounds, particularly proteins. EC 1.11.1.8. Iodinase,Iodothyronine 5'-Deiodinase,Iodothyronine Deiodinase,Iodotyrosine Deiodase,Thyroid Peroxidase,Thyroxine 5'-Deiodinase,Thyroxine 5'-Monodeiodinase,5'-Deiodinase,Deiodinase,Iodotyrosine Deiodinase,Monodeiodinase,Reverse Triiodothyronine 5'-Deiodinase,T4-5'-Deiodinase,T4-Monodeiodinase,Tetraiodothyronine 5'-Deiodinase,Thyroxine Converting Enzyme,Triiodothyronine Deiodinase,5' Deiodinase,5'-Deiodinase, Iodothyronine,5'-Deiodinase, Reverse Triiodothyronine,5'-Deiodinase, Tetraiodothyronine,5'-Deiodinase, Thyroxine,5'-Monodeiodinase, Thyroxine,Deiodase, Iodotyrosine,Deiodinase, Iodothyronine,Deiodinase, Iodotyrosine,Deiodinase, Triiodothyronine,Enzyme, Thyroxine Converting,Iodothyronine 5' Deiodinase,Peroxidase, Iodide,Peroxidase, Thyroid,Reverse Triiodothyronine 5' Deiodinase,T4 5' Deiodinase,T4 Monodeiodinase,Tetraiodothyronine 5' Deiodinase,Thyroxine 5' Deiodinase,Thyroxine 5' Monodeiodinase,Triiodothyronine 5'-Deiodinase, Reverse
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005980 Glutathione Reductase Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2. Glutathione-Disulfide Reductase,Reductase, Glutathione,Reductase, Glutathione-Disulfide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Sato, and S Maruyama, and K Nomura
October 1973, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
T Sato, and S Maruyama, and K Nomura
September 1974, Acta endocrinologica,
T Sato, and S Maruyama, and K Nomura
November 1985, Biochimica et biophysica acta,
T Sato, and S Maruyama, and K Nomura
November 1975, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
T Sato, and S Maruyama, and K Nomura
November 1963, Endocrinology,
T Sato, and S Maruyama, and K Nomura
December 1983, Nihon Sanka Fujinka Gakkai zasshi,
T Sato, and S Maruyama, and K Nomura
November 1981, Journal of applied physiology: respiratory, environmental and exercise physiology,
Copied contents to your clipboard!