Active subunits in hybrid-modified malate dehydrogenase. 1982

S R Jurgensen, and J H Harrison

Inactivation of porcine heart mitochondrial malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37) by selective modification of an active center histidine residue with the reagent iodoacetamide has been further investigated to examine the existence of and the enzymatic activity of a hybrid (half)-modified dimer. The loss of enzymatic activity during iodo(1-14C) acetamide modification is linear with 14C incorporation. Enzyme was modified to various extents and the reaction was quenched. Microzonal electrophoresis was performed to separate native dimeric enzyme, hybrid-modified enzyme, and doubly modified enzyme. The distribution of each species was quantitated by scanning densitometry. The distribution generated throughout the time course of inactivation indicates that both subunits are modified independently and at the same rate. It is apparent that the hybrid-modified dimer contributes one-half of the enzymatic activity of a native dimer in the standard assay. Kinetic studies were performed and the results indicate that there is no apparent change in kinetic parameters between a subunit of the native dimer and the active subunit in the hybrid-modified dimer. Dissociation and reassociation of a mixture of native enzyme and doubly-iodoacetamide-modified enzyme indicates that there is no preferential association of a modified subunit with another modified subunit, or of a native subunit with another native subunit, but rather, association is random with respect to native and iodoacetamide-modified subunits.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

S R Jurgensen, and J H Harrison
May 2000, Biochimica et biophysica acta,
S R Jurgensen, and J H Harrison
March 1969, Biochemistry,
S R Jurgensen, and J H Harrison
August 1966, Proceedings of the National Academy of Sciences of the United States of America,
S R Jurgensen, and J H Harrison
July 1980, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
S R Jurgensen, and J H Harrison
May 1968, Zentralblatt fur Gynakologie,
S R Jurgensen, and J H Harrison
December 1988, Science (New York, N.Y.),
S R Jurgensen, and J H Harrison
September 1971, Biochimica et biophysica acta,
S R Jurgensen, and J H Harrison
January 1979, Archives of biochemistry and biophysics,
S R Jurgensen, and J H Harrison
February 1995, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!