Intracellular glycosylation of vitellogenin in the liver of estrogen-stimulated Xenopus laevis. 1982

T A Gottlieb, and R A Wallace

Pulse-chase experiments measuring the rates of incorporation of radiolabeled glucosamine and galactose into intracellular vitellogenin show that glycosylation of this multicomponent protein occurs in a Golgi-enriched fraction isolated from homogenized liver slices. No apparent role of the rough endoplasmic reticulum in this process was demonstrable. Kinetics of the intracellular translocation of glycosylated vitellogenin indicate that the galactosylated intermediate is secreted more rapidly than the glucosamine-labeled precursor. This was corroborated by measuring the rates of accumulation of various pulse-labeled forms of vitellogenin in the chase medium. In addition, a negligible amount of mannose was incorporated into intracellular or secreted vitellogenin. The antibiotic tunicamycin was shown to inhibit [3H] glucosamine incorporation into microsomal vitellogenin by 70%, without any significant effect on the synthesis of the protein backbone. In addition, nonglycosylated vitellogenin showed normal secretion kinetics. After suitable pretreatment with the antibiotic followed by a labeling period in tunicamycin-free medium, mannose was still not incorporated into vitellogenin, whereas glucosamine behaved in a typical manner. In contrast to this finding, gas-liquid chromatography of the alditol acetate derivatives of the neutral hexoses of vitellogenin showed that mannose was indeed a major component of the vitellogenin oligosaccharide side chain. These preliminary results indicate that the oligosaccharide component of vitellogenin in Xenopus laevis is a "complex" type of carbohydrate unit which is linked via an N-glycosidic bond between an asparagine residue and N-acetylglucosamine. With respect to the subcellular localization of glycoprotein assembly in Xenopus liver, there is a significant departure from currently accepted models of glycoprotein synthesis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose
D005944 Glucosamine 2-Amino-2-Deoxyglucose,Dona,Dona S,Glucosamine Sulfate,Hespercorbin,Xicil,2 Amino 2 Deoxyglucose,Sulfate, Glucosamine
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T A Gottlieb, and R A Wallace
March 1980, European journal of biochemistry,
T A Gottlieb, and R A Wallace
July 1982, The American journal of physiology,
T A Gottlieb, and R A Wallace
February 1985, Molecular and cellular endocrinology,
T A Gottlieb, and R A Wallace
May 1983, The Journal of biological chemistry,
T A Gottlieb, and R A Wallace
March 1992, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!