Core structure, internal osmotic pressure and irreversible structural changes of chromaffin granules during osmometer behaviour. 1982

T C Südhof

In the adrenal medullary cells, catecholamines are stored in and secreted from specialized secretory vesicles, the chromaffin granules. In order to gain some understanding of both functions of chromaffin granules, it is important to characterize their biophysical organization. Using isolated bovine chromaffin granules we have investigated the osmometer behaviour of chromaffin granules by 31P-NMR and fluorescence spectroscopy, by turbidity measurements and by electron-microscopic determination of chromaffin granule size distributions. On the basis of the osmometer model we have formulated equations predicting the behaviour of the native catecholamine fluorescence quenching and of the size of chromaffin granules a a function of osmolarity and have shown experimentally that the granules' behaviour conforms to these. It was possible to estimate the osmotic activity of the chromaffin granule core solution and the mean absolute water space in chromaffin granules from the determination of the size distributions as a function of osmotic pressure. With NMR spectroscopy a selective line-broadening of the alpha-resonances was observed with increasing osmolarities, while the gamma-phosphorus resonances remained virtually unchanged. Possibly there is an increase in core viscosity with osmolarity which affects only the alpha- and beta-phosphorus groups. While suspending chromaffin granules from lower to higher osmolarities causes no lysis, moving them back to their original osmolarity at which they were previously stable lyses them, thereby releasing a maximum of 70% of their releasable protein. This 'hyperosmolar' lysis is independent of preincubation times in the higher osmolarities and of the absolute dilution applied but depends on dilution beyond the 405 to 322 mosM sucrose range. Under the experiment conditions no uptake of sucrose from the medium into the granules could be measured, thereby suggesting that hyperosmolar lysis is a phenomenon not due to solute penetration. Since with NMR and fluorescence spectroscopy no chemical changes in the core composition can be observed, we conclude that hyperosmolar lysis may be caused by irreversible membrane relaxation upon osmotic shrinking.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002837 Chromaffin Granules Organelles in CHROMAFFIN CELLS located in the adrenal glands and various other organs. These granules are the site of the synthesis, storage, metabolism, and secretion of EPINEPHRINE and NOREPINEPHRINE. Chromaffin Granule,Granule, Chromaffin
D002838 Chromaffin System The cells of the body which stain with chromium salts. They occur along the sympathetic nerves, in the adrenal gland, and in various other organs. Argentaffin System,Argentaffin Systems,Chromaffin Systems,System, Argentaffin,System, Chromaffin,Systems, Argentaffin,Systems, Chromaffin
D000313 Adrenal Medulla The inner portion of the adrenal gland. Derived from ECTODERM, adrenal medulla consists mainly of CHROMAFFIN CELLS that produces and stores a number of NEUROTRANSMITTERS, mainly adrenaline (EPINEPHRINE) and NOREPINEPHRINE. The activity of the adrenal medulla is regulated by the SYMPATHETIC NERVOUS SYSTEM. Adrenal Medullas,Medulla, Adrenal,Medullas, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T C Südhof
July 1974, Biochimica et biophysica acta,
T C Südhof
July 1996, Physical review. B, Condensed matter,
T C Südhof
January 1966, Scandinavian journal of clinical and laboratory investigation,
T C Südhof
December 1954, The Yale journal of biology and medicine,
T C Südhof
January 1982, Clinical and experimental hypertension. Part B, Hypertension in pregnancy,
T C Südhof
April 1931, Plant physiology,
Copied contents to your clipboard!