Locust local nonspiking interneurons which tonically drive antagonistic motor neurons: physiology, morphology, and ultrastructure. 1982

J A Wilson, and C E Phillips

Local nonspiking interneurons have been implicated in the control of behavior. We have characterized the physiology of two local nonspiking interneurons in the locust and subsequently examined the neurons in the light and electron microscopes. Physiologically the two interneurons have opposite effects upon antagonistic motor neurons and are tonically releasing transmitter at their "resting potentials." This combination of tonic release and reciprocal driving of antagonistic motor neurons by single interneurons provides a hitherto undescribed means of controlling posture. One interneuron (DCVII, 4) excites flexor tibiae and inhibits the slow extensor tibiae motor neurons when depolarized. The other interneuron (DCVII, 5) inhibits the flexor tibiae and excites the slow extensor tibiae motor neurons when depolarized. In both cases, when the interneurons are hyperpolarized, they have the opposite effects upon the same motor neurons. Intracellular staining of these neurons confirms that they are local interneurons. Furthermore, an examination of sectioned material shows that the neurons are unique and can be identified as such in a population of locust neurons. Ultrastructurally, we find synapses only on the smaller (less than 2 micrometers) branches. These neurons may form the presynaptic element in either of two configurations, these being the discrete density (one presynaptic) and the dense bar (one presynaptic, two postsynaptic) type of configurations. The functional implications of these findings for neurons controlling posture are discussed.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D006110 Grasshoppers Plant-eating orthopterans having hindlegs adapted for jumping. There are two main families: Acrididae and Romaleidae. Some of the more common genera are: Melanoplus, the most common grasshopper; Conocephalus, the eastern meadow grasshopper; and Pterophylla, the true katydid. Acrididae,Locusts,Romaleidae,Grasshopper,Locust
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

J A Wilson, and C E Phillips
September 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J A Wilson, and C E Phillips
July 1981, Journal of neurobiology,
J A Wilson, and C E Phillips
October 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J A Wilson, and C E Phillips
August 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J A Wilson, and C E Phillips
June 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J A Wilson, and C E Phillips
April 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!