K+ transport in "tight' epithelial monolayers of MDCK cells. 1982

J F Aiton, and C D Brown, and P Ogden, and N L Simmons

Bidirectional transepithelial K+ flux measurements across 'high-resistance' epithelial monolayers of MDCK cells grown upon millipore filters show no significant net K+ flux. Measurements of influx and efflux across the basal-lateral and apical cell membranes demonstrate that the apical membranes are effectively impermeable to K+. K+ influx across the basal-lateral cell membranes consists of an ouabain-sensitive component, an ouabain-insensitive component, an ouabain-insensitive but furosemide-sensitive component, and an ouabain- and furosemide-insensitive component. The action of furosemide upon K+ influx is independent of (Na+ - K+)-pump inhibition. The furosemide-sensitive component is markedly dependent upon the medium K+, Na+ and Cl- content. Acetate and nitrate are ineffective substitutes for Cl-, whereas Br- is partially effective. Partial Cl- replacement by NO3 gives a roughly linear increase in the furosemide-sensitive component. Na+ replacement by choline abolishes the furosemide-sensitive component, whereas Li+ is a partially effective replacement. Partial Na+ replacement by choline abolishes the furosemide-sensitive component, whereas Li+ is a partially effective replacement. Partial Na+ replacement with choline gives an apparent affinity of approximately 7 mM Na, whereas variation of the external K+ content gives an affinity of the furosemide-sensitive component of 1.0 mM. Furosemide inhibition is of high affinity (K1/2 = 3 micrometer). Piretanide, ethacrynic acid, and phloretin inhibit the same component of passive K+ influx as furosemide; amiloride, 4,-aminopyridine, and 2,4,6-triaminopyrimidine partially so. SITS was ineffective. Externally applied furosemide and Cl- replacement by NO3- inhibit K+ efflux across the basal-lateral membranes indicating that the furosemide-sensitive component consists primarily of K:K exchange.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005665 Furosemide A benzoic-sulfonamide-furan. It is a diuretic with fast onset and short duration that is used for EDEMA and chronic RENAL INSUFFICIENCY. Frusemide,Fursemide,Errolon,Frusemid,Furanthril,Furantral,Furosemide Monohydrochloride,Furosemide Monosodium Salt,Fusid,Lasix

Related Publications

J F Aiton, and C D Brown, and P Ogden, and N L Simmons
April 1981, The Journal of membrane biology,
J F Aiton, and C D Brown, and P Ogden, and N L Simmons
August 1982, Biochimica et biophysica acta,
J F Aiton, and C D Brown, and P Ogden, and N L Simmons
January 1985, The Journal of membrane biology,
J F Aiton, and C D Brown, and P Ogden, and N L Simmons
March 1989, The American journal of physiology,
J F Aiton, and C D Brown, and P Ogden, and N L Simmons
May 1996, The Biochemical journal,
J F Aiton, and C D Brown, and P Ogden, and N L Simmons
July 1995, Hepatology (Baltimore, Md.),
J F Aiton, and C D Brown, and P Ogden, and N L Simmons
June 2013, Biomaterials,
J F Aiton, and C D Brown, and P Ogden, and N L Simmons
February 1993, European journal of cell biology,
J F Aiton, and C D Brown, and P Ogden, and N L Simmons
January 1985, European journal of cell biology,
J F Aiton, and C D Brown, and P Ogden, and N L Simmons
July 1999, The American journal of physiology,
Copied contents to your clipboard!