Permeability of the foetal capillary endothelium of the guinea-pig placenta to haem proteins of various molecular sizes. 1982

C P Sibley, and K F Bauman, and J A Firth

Haem proteins of different molecular sizes were perfused into the foetal circulation of the guinea-pig placenta to study the permeability of the foetal endothelium. The smallest molecules tested, microperoxidase (ae 1.0 nm) and cytochrome C (ae 1.5 nm), readily penetrated the endothelium; tracer-reaction product was found in the subendothelial space of the capillaries. However, there was no uptake of these two tracers into the syncytiotrophoblast layer of the placenta. An intermediate-sized molecule, myoglobin (ae 1.7 nm) produced only a weak reaction product in the subendothelial space even when perfused at high concentration. The largest molecule tested, haemoglobin (ae 2.8 nm), did not penetrate the foetal endothelium at any of the concentrations employed. The foetal capillary endothelium thus provided a barrier to protein penetration from the foetal circulation, dependent on molecular size. There was evidence that the site of this barrier was located in the lateral intercellular spaces between the endothelial cells. The syncytiotrophoblast of this haemomonochorial placenta provided an almost absolute barrier to protein penetration from the foetal circulation. As other workers have described maternal-to-foetal transmission of proteins across this layer in the guinea-pig, a working hypothesis of the role of endothelium and syncytiotrophoblast in maternal/foetal protein exchange is discussed.

UI MeSH Term Description Entries
D008431 Maternal-Fetal Exchange Exchange of substances between the maternal blood and the fetal blood at the PLACENTA via PLACENTAL CIRCULATION. The placental barrier excludes microbial or viral transmission. Transplacental Exposure,Exchange, Maternal-Fetal,Exposure, Transplacental,Maternal Fetal Exchange
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D004727 Endothelium A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body. Endotheliums
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

C P Sibley, and K F Bauman, and J A Firth
March 1977, The Journal of endocrinology,
C P Sibley, and K F Bauman, and J A Firth
January 1987, Placenta,
C P Sibley, and K F Bauman, and J A Firth
January 1988, Placenta,
C P Sibley, and K F Bauman, and J A Firth
January 1959, Atti della Accademia dei fisiocritici in Siena. Sezione medico-fisica,
C P Sibley, and K F Bauman, and J A Firth
July 1954, Acta physiologica Scandinavica,
C P Sibley, and K F Bauman, and J A Firth
March 1956, Acta physiologica Scandinavica,
C P Sibley, and K F Bauman, and J A Firth
September 1962, American journal of obstetrics and gynecology,
C P Sibley, and K F Bauman, and J A Firth
September 1956, Acta physiologica Scandinavica,
C P Sibley, and K F Bauman, and J A Firth
January 1989, Placenta,
Copied contents to your clipboard!