Studies of in vitro transcription by calf thymus RNA polymerase II using a novel duplex DNA template. 1982

T R Kadesch, and M J Chamberlin

Addition of 10 to 100 oligodeoxycytidylate residues to the 3'-OH termini of T7 bacteriophage DNA produces a highly efficient template for transcription in vitro with purified calf thymus RNA polymerase II. Transcription initiates rapidly and selectively at the oligo (dC) ends of such a template and essentially all of the active RNA polymerase II molecules are then committed to a long period of RNA chain elongation. This allows the direct study of the RNA chain elongation and termination reactions and also permits determination of the concentration of active RNA polymerase II that is present. From 15 to 25% of the RNA polymerase molecules in our current preparations are active in these reactions. RNA chain elongation by calf thymus RNA polymerase II is relatively slow (7 nucleotides/s) even at saturating substrate concentrations. The in vitro elongation process appears to be discontinuous, with elongating polymerase molecules pausing for significant periods at certain sequences along the DNA. There is a low, but measurable frequency of RNA chain termination at some sites; however, the majority of elongating transcripts can grow to large sizes (over 6000 nucleotides). Surprisingly, over 60% of the active calf thymus RNA polymerase II molecules form a long DNA-RNA hybrid during in vitro transcription and displace the nontranscribed DNA from the template to produce a characteristic split end structure. DNA-RNA hybrids are also formed during transcription by RNA polymerase II from duplex DNA templates lacking 3' oligo(dC) tails, which takes place predominantly at single strand breaks or ends. Thus the transcriptional elongation reaction carried out by calf thymus RNA polymerase II in vitro differs in several respects from that which must take place in vivo.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D000645 Ammonium Sulfate Sulfuric acid diammonium salt. It is used in CHEMICAL FRACTIONATION of proteins. Sulfate, Ammonium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II

Related Publications

T R Kadesch, and M J Chamberlin
June 1990, Journal of biochemical and biophysical methods,
T R Kadesch, and M J Chamberlin
June 1975, Journal of molecular biology,
T R Kadesch, and M J Chamberlin
September 1978, Journal of molecular biology,
T R Kadesch, and M J Chamberlin
July 1984, Nucleic acids research,
T R Kadesch, and M J Chamberlin
November 1968, Biochemical and biophysical research communications,
Copied contents to your clipboard!