Carbohydrate compositional effects on tissue distribution of chicken riboflavin-binding protein. 1982

M S Miller, and R C Bruch, and H B White

Riboflavin-binding proteins (RBP) purified from chicken egg white, yolk and the serum of laying hens differ in their carbohydrate compositions reflecting tissue-specific modifications of a single gene product. All three are complex glycoproteins having more than twice as many N-acetylglucosamine residues (greater than 12) as mannose residues (approx. 6). Egg white RBP is distinctive in having only one sialic acid and two galactose residues. Serum RBP contains approx. five sialic acid and seven galactose residues. In addition there is one residue of fucose. The carbohydrate composition of yolk RBP indicated the hydrolysis, respectively, of one, one, two and 3 residues of sialic acid, fucose, galactose, and N-acetylglucosamine from its precursor, serum RBP. The effect of these differing levels of glycosylation on plasma clearance, ovarian uptake and tissue distribution of 125I-labeled riboflavin-binding proteins in laying hens were compared. 2 h after intravenous injection, 19% of the egg white RBP, 29% of the yolk RBP, and 37% of the serum RBP remained in circulation. The kinetics of plasma clearance was distinctly biphasic for each of the radioiodinated proteins. The initial rapid-turnover component (t1/2 = 13 min) ranged from 27% of the serum RBP sample to 48% of the egg white RBP sample. The remaining slow-turnover components were cleared with half-lives of 81 min (egg white RBP), 101 min (yolk RBP), and 121 min (serum RBP). 16 h after injection, only 4% of the egg white RBP was deposited in the yolk of developing oocytes while about 12% of the serum RBP and yolk RBP was deposited. This highly significant difference is apparently due to preferential, carbohydrate-dependent clearance of egg white RBP by the liver rather than preferential uptake of serum and yolk RBP by the ovarian follicle. We find no evidence for carbohydrate-directed uptake of riboflavin-binding protein by the ovarian follicle.

UI MeSH Term Description Entries
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004527 Egg Proteins Proteins which are found in eggs (OVA) from any species. Egg Protein,Egg Shell Protein,Egg Shell Proteins,Egg White Protein,Egg White Proteins,Egg Yolk Protein,Egg Yolk Proteins,Ovum Protein,Ovum Proteins,Yolk Protein,Yolk Proteins,Protein, Egg,Protein, Egg Shell,Protein, Egg White,Protein, Egg Yolk,Protein, Ovum,Protein, Yolk,Proteins, Egg,Proteins, Egg Shell,Proteins, Egg White,Proteins, Egg Yolk,Proteins, Ovum,Proteins, Yolk,Shell Protein, Egg,Shell Proteins, Egg,White Protein, Egg,White Proteins, Egg,Yolk Protein, Egg,Yolk Proteins, Egg
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012794 Sialic Acids A group of naturally occurring N-and O-acyl derivatives of the deoxyamino sugar neuraminic acid. They are ubiquitously distributed in many tissues. N-Acetylneuraminic Acids,Acids, N-Acetylneuraminic,Acids, Sialic,N Acetylneuraminic Acids
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

M S Miller, and R C Bruch, and H B White
April 1997, The EMBO journal,
M S Miller, and R C Bruch, and H B White
July 1984, Biochemistry,
M S Miller, and R C Bruch, and H B White
February 1996, The Journal of nutrition,
M S Miller, and R C Bruch, and H B White
August 1988, The Journal of biological chemistry,
M S Miller, and R C Bruch, and H B White
August 1987, Biochemical and biophysical research communications,
M S Miller, and R C Bruch, and H B White
April 1987, Bioorganicheskaia khimiia,
M S Miller, and R C Bruch, and H B White
November 1997, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
M S Miller, and R C Bruch, and H B White
September 1986, The Biochemical journal,
M S Miller, and R C Bruch, and H B White
January 1989, American journal of reproductive immunology (New York, N.Y. : 1989),
Copied contents to your clipboard!