Effect of acute arterial hypo- and hypertension on cerebrocortical NAD/NADH redox state and vascular volume. 1982

E Dóra, and A G Kovách

The effects of stepwise arterial hypotension (MABP: 80, 60, 40 mm Hg) and moderate arterial hypo- and hypertension (MABP: 80, 150-160 mm Hg) on cerebrocortical vascular volume and NAD/NADH redox state were studied in anaesthetized cats. The vascular volume and NADH fluorescence measurements were performed on closed skull preparations using a microscope fluororeflectometer. To determine the possible role of adrenergic alpha-receptors in the autoregulatory adjustment of cerebrocortical vascular volume, some of the animals were pretreated with intra-arterially infused phenoxybenzamine (1 mg/kg). It was found that longlasting stepwise arterial hypotension leads to a gradual increase in cerebrocortical vascular volume and NADH fluorescence. Though the cerebrocortical arteries dilatated considerably at 80 mm Hg, sustained for 30 min, the NAD/NADH redox state failed to be reoxidized but was shifted to a more reduced state. This finding suggests that some factor other than tissue hypoxia is responsible for the dilatation of cerebrocortical vessels during moderate arterial hypotension. When the arterial blood pressure was restored following stepwise arterial hypotension, the cerebrocortical vascular volume did not decrease and the NAD/NADH redox state remained reduced, showing that the autoregulatory capability of the vessels was lost and the tissue metabolism was irreversibly altered. During a 5-min duration of moderate arterial hypo- and hypertension, biphasic changes were obtained in cerebrocortical vascular volume while the NAD/NADH redox state was shifted to a more reduced and oxidized state. Since the dilatation and the constriction of the cerebrocortical vessels during arterial hypo- and hypertension lagged by 40-80 s behind the redox state alterations, it is suggested that the myogenic mechanism has a minor role in CBF autoregulation. Phenoxybenzamine (PBZ) dilatated the cerebrocortical vessels, indicating the existence of an active alpha-receptor-mediated vasoconstrictory tone. Since the extent of autoregulatory vascular volume changes was not affected by PBZ pretreatment, the involvement of adrenergic alpha-receptors in the autoregulation of CBF can be excluded, at least for cats.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007022 Hypotension Abnormally low BLOOD PRESSURE that can result in inadequate blood flow to the brain and other vital organs. Common symptom is DIZZINESS but greater negative impacts on the body occur when there is prolonged depravation of oxygen and nutrients. Blood Pressure, Low,Hypotension, Vascular,Low Blood Pressure,Vascular Hypotension
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010643 Phenoxybenzamine An alpha-adrenergic antagonist with long duration of action. It has been used to treat hypertension and as a peripheral vasodilator. Dibenylene,Dibenyline,Dibenziran,Dibenzylin,Dibenzyline,Dibenzyran,Phenoxybenzamine Hydrochloride,Hydrochloride, Phenoxybenzamine
D001810 Blood Volume Volume of circulating BLOOD. It is the sum of the PLASMA VOLUME and ERYTHROCYTE VOLUME. Blood Volumes,Volume, Blood,Volumes, Blood
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000208 Acute Disease Disease having a short and relatively severe course. Acute Diseases,Disease, Acute,Diseases, Acute
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E Dóra, and A G Kovách
January 1984, Advances in experimental medicine and biology,
E Dóra, and A G Kovách
December 1983, Journal of neurochemistry,
E Dóra, and A G Kovách
July 1985, Pflugers Archiv : European journal of physiology,
E Dóra, and A G Kovách
December 2000, American journal of physiology. Heart and circulatory physiology,
E Dóra, and A G Kovách
January 2019, Antioxidants & redox signaling,
E Dóra, and A G Kovách
December 2011, Journal of neuroscience research,
E Dóra, and A G Kovách
March 2002, American journal of hypertension,
E Dóra, and A G Kovách
July 1988, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!