Effect of spironolactone on hepatic microsomal monooxygenase and azoreductase activities. 1982

S Fujita, and T Uesugi, and M Ohta, and K Kitani

Spironolactone pretreatment (10mg/100g, twice daily for 4 days, orally) caused a significant decrease in cytochrome P-450 levels in the liver microsomes in female rats but male rats were unaffected. NADH oxidase activity was significantly decreased in both sexes by this pretreatment but NADPH oxidase and NADH cytochrome C reductase activities were not altered. NADPH cytochrome c reductase activity was increased more markedly in female rats. Despite the decrease in P-450 levels, aminopyrine N-demethylase activity was increased in female rats, while it remained unchanged in males. 7-Ethoxycoumarin O-deethylase activity was markedly increased in male and slightly decreased in female rats. The azoreductase activity was slightly reduced in treated male rats and remained unaltered in female rats when it was expressed in activity per mg microsomal protein, but the activity did show a significant increase in female rats when it was expressed as a P-450 specific rate. Sex associated differences in the effect of spironolactone on the rat liver microsomal drug metabolizing enzyme system demonstrated in the present study cannot be simply explained by the previously reported effect on adrenal and testicular steroids in male rats. It also seems unlikely that these effects were caused by an alteration in P-450 quality by selective destruction of certain species of P-450.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009601 Nitroreductases Enzymes which reduce nitro groups (NITRO COMPOUNDS) and other nitrogenous compounds. Nitroreductase,Oxidoreductases Acting on other Nitrogenous Compounds as Donors
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D005260 Female Females
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function

Related Publications

S Fujita, and T Uesugi, and M Ohta, and K Kitani
January 1989, Alcohol (Fayetteville, N.Y.),
S Fujita, and T Uesugi, and M Ohta, and K Kitani
February 1985, Biochemical pharmacology,
S Fujita, and T Uesugi, and M Ohta, and K Kitani
January 1983, Arzneimittel-Forschung,
S Fujita, and T Uesugi, and M Ohta, and K Kitani
March 1990, Xenobiotica; the fate of foreign compounds in biological systems,
S Fujita, and T Uesugi, and M Ohta, and K Kitani
February 1989, Toxicology letters,
S Fujita, and T Uesugi, and M Ohta, and K Kitani
November 1988, Cancer research,
S Fujita, and T Uesugi, and M Ohta, and K Kitani
January 1989, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
S Fujita, and T Uesugi, and M Ohta, and K Kitani
January 1984, Alcohol (Fayetteville, N.Y.),
Copied contents to your clipboard!