Role of calmodulin in platelet aggregation. Structure-activity relationship of calmodulin antagonists. 1982

M Nishikawa, and H Hidaka

Two series of derivatives of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), including a dechlorinated analog of W-7 (W-5) and various aminoalkyl chain analogs of W-7 (A-3, A-4, A-5, I-240, A-6) were synthesized and their structure-activity relationships with calmodulin antagonistic actions and their potencies in inhibiting human platelet aggregation in vitro were investigated. Their binding affinities to calmodulin in the presence of 100 microM Ca2+ were dependent both on the chlorination of the naphthalene ring and on the length of aminoalkyl chain. The ability of these derivatives to inhibit Ca2+-dependent phosphorylation of 20,000-dalton myosin light chain from platelets correlated well with the magnitude of their binding affinity to calmodulin. W-7(10-100 microM) inhibited in a dose-dependent manner platelet aggregation induced by collagen (2 micrograms/ml), ADP (5 microM), epinephrine (1 microgram/ml), sodium arachidonate (0.83 mM), thrombin (0.125 U/ml), and A-23187 (10 microM). The IC50 value (concentration producing 50% inhibition of aggregation) of W-7 was lower in arachidonate- and collagen-induced aggregation than in ADP- or epinephrine-induced aggregation. A good correlation between the potency in inhibition of collagen-induced aggregation by W-7 and its derivatives and their affinities to calmodulin was obtained (r = 0.94). Thus, the inhibitory mechanism of these compounds may be due to their effect on Ca2+-calmodulin-dependent processes, such as 20,000-dalton myosin light chain phosphorylation. These data also support the hypothesis that the calmodulin-mediated system has an important role in platelet function.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M Nishikawa, and H Hidaka
November 1981, Molecular pharmacology,
M Nishikawa, and H Hidaka
March 1995, International clinical psychopharmacology,
M Nishikawa, and H Hidaka
November 1983, Nihon geka hokan. Archiv fur japanische Chirurgie,
M Nishikawa, and H Hidaka
October 1969, Biochimica et biophysica acta,
M Nishikawa, and H Hidaka
April 2010, Thrombosis research,
M Nishikawa, and H Hidaka
October 2004, The Journal of pharmacy and pharmacology,
M Nishikawa, and H Hidaka
January 2019, Medicinal chemistry (Shariqah (United Arab Emirates)),
M Nishikawa, and H Hidaka
May 1986, Archives of biochemistry and biophysics,
M Nishikawa, and H Hidaka
January 1989, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Copied contents to your clipboard!