The role of oxygen in the regulation of glucose metabolism, transport and the tricarboxylic acid cycle in Pseudomonas aeruginosa. 1982

C G Mitchell, and E A Dawes

The effect of dissolved oxygen concentration on the metabolism of glucose in Pseudomonas aeruginosa was studied with chemostat cultures using both single-step and gradual transitions from either ammonium or glucose limitation to oxygen limitation and studying transient and steady states. The pathway of glucose metabolism was regulated by the availability of oxygen. The organism responded to oxygen limitation by adjusting its metabolism of glucose from the extracellular direct oxidative pathway, which produces gluconate and 2-oxogluconate, to the intracellular phosphorylative route. This change was a consequence of decreased activities of glucose dehydrogenase and gluconate dehydrogenase and of the transport systems for gluconate and 2-oxogluconate, and an increased activity of glucose transport, while relatively high activities of hexokinase and glucose-6-phosphate dehydrogenase were maintained. Citrate synthase, isocitrate dehydrogenase and malate dehydrogenase activities responded to changes in dissolved oxygen concentration rather than to changes in the glucose or ammonium concentrations. The effect of oxygen limitation on the oxo-acid dehydrogenases and aconitase was probably due, wholly or in part, to repression by glucose consequent upon the increase in residual glucose concentration. Succinate dehydrogenase was repressed by an increase in ammonium concentration under an oxygen limitation.

UI MeSH Term Description Entries
D007521 Isocitrate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41. NAD Isocitrate Dehydrogenase,Isocitrate Dehydrogenase (NAD+),Isocitrate Dehydrogenase-I,Dehydrogenase, Isocitrate,Dehydrogenase, NAD Isocitrate,Isocitrate Dehydrogenase I,Isocitrate Dehydrogenase, NAD
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002950 Citrate (si)-Synthase Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. Citrate Synthase,Synthase, Citrate
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles
D005942 Gluconates Derivatives of gluconic acid (the structural formula HOCH2(CHOH)4COOH), including its salts and esters. Copper Gluconate,Gluconate, Copper
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000645 Ammonium Sulfate Sulfuric acid diammonium salt. It is used in CHEMICAL FRACTIONATION of proteins. Sulfate, Ammonium
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

C G Mitchell, and E A Dawes
June 1951, The Journal of biological chemistry,
C G Mitchell, and E A Dawes
June 1956, Canadian journal of microbiology,
C G Mitchell, and E A Dawes
August 1953, Biochimica et biophysica acta,
C G Mitchell, and E A Dawes
February 1959, Journal of general microbiology,
C G Mitchell, and E A Dawes
June 1964, Canadian journal of microbiology,
Copied contents to your clipboard!