The topology of epoxide hydratase and benzpyrene monooxygenase in the endoplasmic reticulum of rat liver. 1978

J Seidegård, and M S Moron, and L C Eriksson, and J W DePierre

The distributions of benzpyrene monooxygenase and epoxide hydratase in subfractions of liver microsomes from control and from phenobarbital- and methylcholanthrene-treated rats have been investigated. The specific activities of these enzymes in rough and smooth microsomes from control and phenobarbital-treated animals are approximately the same, whereas after methylcholanthrene treatment benzpyrene monooxygenase is four times higher and epoxide hydratase twice as high in the rough vesicles. Further subfractionation of rough and smooth microsomes by rate differential centrifugation revealed the distributions of both enzymes among microsomal vesicles to be highly heterogeneous. Comparison of these distributions leads to the conclusion that the benzpyrene monooxygenase system and epoxide hydratase may form a complex of unique stoichiometry in the membrane of microsomes from control rats, but that such a complex is not consistent with the distributions obtained after methylcholanthrene induction. Studies with proteases and the nonpenetrating chemical reagent diazobenzene sulfonate suggest that epoxide hydratase may be buried deeply in the hydrophobic phase of the membrane of the hepatic endoplasmic reticulum.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D004851 Epoxide Hydrolases Enzymes that catalyze reversibly the formation of an epoxide or arene oxide from a glycol or aromatic diol, respectively. Epoxide Hydrase,Epoxide Hydrases,Epoxide Hydratase,Epoxide Hydratases,Epoxide Hydrolase,9,10-Epoxypalmitic Acid Hydrase,Microsomal Epoxide Hydrolase,Styrene Epoxide Hydrolase,9,10 Epoxypalmitic Acid Hydrase,Acid Hydrase, 9,10-Epoxypalmitic,Epoxide Hydrolase, Microsomal,Epoxide Hydrolase, Styrene,Hydrase, 9,10-Epoxypalmitic Acid,Hydrase, Epoxide,Hydrases, Epoxide,Hydratase, Epoxide,Hydratases, Epoxide,Hydrolase, Epoxide,Hydrolase, Microsomal Epoxide,Hydrolase, Styrene Epoxide,Hydrolases, Epoxide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001189 Aryl Hydrocarbon Hydroxylases A large group of cytochrome P-450 (heme-thiolate) monooxygenases that complex with NAD(P)H-FLAVIN OXIDOREDUCTASE in numerous mixed-function oxidations of aromatic compounds. They catalyze hydroxylation of a broad spectrum of substrates and are important in the metabolism of steroids, drugs, and toxins such as PHENOBARBITAL, carcinogens, and insecticides. Microsomal Monooxygenases,Xenobiotic Monooxygenases,Hydroxylases, Aryl Hydrocarbon,Monooxygenases, Microsomal,Monooxygenases, Xenobiotic
D001579 Benzopyrene Hydroxylase A drug-metabolizing, cytochrome P-448 (P-450) enzyme which catalyzes the hydroxylation of benzopyrene to 3-hydroxybenzopyrene in the presence of reduced flavoprotein and molecular oxygen. Also acts on certain anthracene derivatives. An aspect of EC 1.14.14.1. Benzopyrene-3-Monooxygenase,Benzo(a)pyrene Hydroxylase,Benzo(a)pyrene Monooxygenase,Benzopyrene 3 Monooxygenase,Hydroxylase, Benzopyrene

Related Publications

J Seidegård, and M S Moron, and L C Eriksson, and J W DePierre
January 1982, Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry,
J Seidegård, and M S Moron, and L C Eriksson, and J W DePierre
March 1977, Cell and tissue research,
J Seidegård, and M S Moron, and L C Eriksson, and J W DePierre
January 1976, The Journal of biological chemistry,
J Seidegård, and M S Moron, and L C Eriksson, and J W DePierre
February 1980, Life sciences,
J Seidegård, and M S Moron, and L C Eriksson, and J W DePierre
November 1985, The EMBO journal,
J Seidegård, and M S Moron, and L C Eriksson, and J W DePierre
November 1975, FEBS letters,
J Seidegård, and M S Moron, and L C Eriksson, and J W DePierre
June 1978, Analytical biochemistry,
J Seidegård, and M S Moron, and L C Eriksson, and J W DePierre
January 1977, Biochemical Society transactions,
J Seidegård, and M S Moron, and L C Eriksson, and J W DePierre
March 1981, Experientia,
J Seidegård, and M S Moron, and L C Eriksson, and J W DePierre
April 1991, The Biochemical journal,
Copied contents to your clipboard!