The bovine allantoic and amniotic epithelia. SEM and TEM studies. 1982

K Tiedemann

The ectodermal and endodermal coverings of the allanto-amniotic membrane in cattle fetuses of various gestational ages have been studied by scanning and transmission electron microscopy. We have observed that the allantoic and amniotic epithelia have rather similar cells which are rich in filaments but poor in organelles. Neither epithelium reflects its different origin nor the differences in the composition of the two fetal fluids. Maturation changes occur in the pattern of the various surface specializations until midterm. Coral-like luminal outgrowths, which also contain organelles, were observed in both epithelia, whereas microplicae had formed only on fully differentiated amniotic cells. Interspersed smooth-surface cells in the allantoic epithelium that differ also in nuclear shape, glycocalyx, and mitochondria are regarded as a second cell type. Besides fluid-filled blisters and cornified pustules, the most typical feature of the amniotic epithelium is a rather regular lateral cell interdigitation with tongue-like lamellae of even thickness. Micropinocytotic vesicles are more frequent than in the allantois. Both epithelia possess similar tight junctions; no morphological or histochemical indications of an active sodium transport were evidenced.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005321 Extraembryonic Membranes The thin layers of tissue that surround the developing embryo. There are four extra-embryonic membranes commonly found in VERTEBRATES, such as REPTILES; BIRDS; and MAMMALS. They are the YOLK SAC, the ALLANTOIS, the AMNION, and the CHORION. These membranes provide protection and means to transport nutrients and wastes. Fetal Membranes,Extra-Embryonic Membranes,Extra Embryonic Membranes,Extra-Embryonic Membrane,Extraembryonic Membrane,Fetal Membrane,Membrane, Extra-Embryonic,Membrane, Extraembryonic,Membrane, Fetal,Membranes, Extra-Embryonic,Membranes, Extraembryonic,Membranes, Fetal
D000482 Allantois An extra-embryonic membranous sac derived from the YOLK SAC of REPTILES; BIRDS; and MAMMALS. It lies between two other extra-embryonic membranes, the AMNION and the CHORION. The allantois serves to store urinary wastes and mediate exchange of gas and nutrients for the developing embryo. Allantoic Membrane,Membrane, Allantoic
D000650 Amnion The innermost membranous sac that surrounds and protects the developing embryo which is bathed in the AMNIOTIC FLUID. Amnion cells are secretory EPITHELIAL CELLS and contribute to the amniotic fluid. Amniotic Membrane,Amnions,Amniotic Membranes,Membrane, Amniotic,Membranes, Amniotic

Related Publications

K Tiedemann
August 1997, The Anatomical record,
K Tiedemann
January 2004, Methods in cell biology,
K Tiedemann
January 2010, Nanoscale research letters,
K Tiedemann
May 1954, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
K Tiedemann
February 1959, Journal of cellular and comparative physiology,
K Tiedemann
August 1993, Zentralblatt fur Veterinarmedizin. Reihe A,
K Tiedemann
January 1983, Zhonghua zhong liu za zhi [Chinese journal of oncology],
Copied contents to your clipboard!