Reactivity versus flexibility in thiobacilli. 1982

R F Beudeker, and J C Gottschal, and J G Kuenen

The results of ecophysiological studies on obligately and facultatively chemolithotrophic thiobacilli performed over the past years clearly show that the two types of organisms occupy different ecological niches. Chemostat experiments with cultures of the obligate chemolithotroph Thiobacillus neapolitanus and the facultative chemolithotroph Thiobacillus A2 have been carried out to explain the competitiveness of T. neapolitanus under conditions of strongly fluctuating substrate supply. Thiobacillus neapolitanus appeared to be very resistant to starvation periods whereafter it could oxidize sulfide (or thiosulfate) almost instantaneously at the original rate. Under alternate supply of 4 h sulfide and 4 h sulfate (or acetate which does not support growth of the organism either) to a chemostat culture of T. neapolitanus (D=0.05h-1) the sulfide concentration in the growth vessel never reached levels higher than 4 micrometers. This strategy is aimed at maximal reactivity. In contrast to T. neapolitanus the facultative chemolithotroph T.A2 appeared to be very flexible with respect to its energy generation. Under alternate supply of 4 h sulfide and 4 acetate (D=0.05h-1) T.A2 was able to grow continuously since it directed its metabolism to either heterotrophy or autotrophy by rapid induction-repression mechanisms. This flexible strategy seems to be incompatible with a reactive strategy within one organism, since the oxidation capacity for sulfide decreased during the acetate period resulting in accumulation of sulfide during the sulfide period. It is concluded that T.A2 needs a continuous supply of an inorganic and an organic substrate to thrive whereas T. neapolitanus needs only a continuous supply of a reduced inorganic sulfur source but also will persist in environments with interrupted addition of sulfide provided that the starvation period does not last too long.

UI MeSH Term Description Entries
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013440 Sulfides Chemical groups containing the covalent sulfur bonds -S-. The sulfur atom can be bound to inorganic or organic moieties. Sulfide,Thioether,Thioethers,Sulfur Ethers,Ethers, Sulfur
D013855 Thiobacillus A genus of gram-negative, rod-shaped bacteria that derives energy from the oxidation of one or more reduced sulfur compounds. Many former species have been reclassified to other classes of PROTEOBACTERIA. Thiobacillus denitrificans,Thiobacillus thioparus

Related Publications

R F Beudeker, and J C Gottschal, and J G Kuenen
September 1957, Bacteriological reviews,
R F Beudeker, and J C Gottschal, and J G Kuenen
February 2013, Chembiochem : a European journal of chemical biology,
R F Beudeker, and J C Gottschal, and J G Kuenen
October 2001, British journal of sports medicine,
R F Beudeker, and J C Gottschal, and J G Kuenen
February 1961, Journal of general microbiology,
R F Beudeker, and J C Gottschal, and J G Kuenen
June 1968, Journal of bacteriology,
R F Beudeker, and J C Gottschal, and J G Kuenen
April 1967, Journal of general microbiology,
R F Beudeker, and J C Gottschal, and J G Kuenen
September 2014, Spine,
R F Beudeker, and J C Gottschal, and J G Kuenen
August 1981, Canadian journal of microbiology,
R F Beudeker, and J C Gottschal, and J G Kuenen
February 1970, Journal of bacteriology,
R F Beudeker, and J C Gottschal, and J G Kuenen
September 1966, Journal of general microbiology,
Copied contents to your clipboard!