Schistosoma mansoni: role in vivo of complement in primary infection of mice. 1982

F Santoro, and B Vandemeulebroucke, and M C Liebart, and A Capron

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D003167 Complement Activation The sequential activation of serum COMPLEMENT PROTEINS to create the COMPLEMENT MEMBRANE ATTACK COMPLEX. Factors initiating complement activation include ANTIGEN-ANTIBODY COMPLEXES, microbial ANTIGENS, or cell surface POLYSACCHARIDES. Activation, Complement,Activations, Complement,Complement Activations
D003170 Complement Pathway, Alternative Complement activation initiated by the interaction of microbial ANTIGENS with COMPLEMENT C3B. When COMPLEMENT FACTOR B binds to the membrane-bound C3b, COMPLEMENT FACTOR D cleaves it to form alternative C3 CONVERTASE (C3BBB) which, stabilized by COMPLEMENT FACTOR P, is able to cleave multiple COMPLEMENT C3 to form alternative C5 CONVERTASE (C3BBB3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX. Alternative Complement Pathway,Properdin Pathway,Alternative Complement Activation Pathway,Complement Activation Pathway, Alternative
D003176 Complement C3 A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase. C3 Complement,C3 Precursor,Complement 3,Complement C3 Precursor,Complement Component 3,Precursor-Complement 3,Pro-C3,Pro-Complement 3,C3 Precursor, Complement,C3, Complement,Complement, C3,Component 3, Complement,Precursor Complement 3,Precursor, C3,Precursor, Complement C3,Pro C3,Pro Complement 3
D003182 Complement C5 C5 plays a central role in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C5 is cleaved by C5 CONVERTASE into COMPLEMENT C5A and COMPLEMENT C5B. The smaller fragment C5a is an ANAPHYLATOXIN and mediator of inflammatory process. The major fragment C5b binds to the membrane initiating the spontaneous assembly of the late complement components, C5-C9, into the MEMBRANE ATTACK COMPLEX. C5 Complement,Complement 5,Complement C5, Precursor,Complement Component 5,Precursor C5,Pro-C5,Pro-complement 5,C5, Complement,C5, Precursor,C5, Precursor Complement,Complement, C5,Component 5, Complement,Precursor Complement C5,Pro C5,Pro complement 5
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012550 Schistosoma mansoni A species of trematode blood flukes of the family Schistosomatidae. It is common in the Nile delta. The intermediate host is the planorbid snail. This parasite causes schistosomiasis mansoni and intestinal bilharziasis. Schistosoma mansonus,mansonus, Schistosoma
D012552 Schistosomiasis Infection with flukes (trematodes) of the genus SCHISTOSOMA. Three species produce the most frequent clinical diseases: SCHISTOSOMA HAEMATOBIUM (endemic in Africa and the Middle East), SCHISTOSOMA MANSONI (in Egypt, northern and southern Africa, some West Indies islands, northern 2/3 of South America), and SCHISTOSOMA JAPONICUM (in Japan, China, the Philippines, Celebes, Thailand, Laos). S. mansoni is often seen in Puerto Ricans living in the United States. Bilharziasis,Katayama Fever,Schistoma Infection,Bilharziases,Fever, Katayama,Infection, Schistoma,Infections, Schistoma,Schistoma Infections,Schistosomiases

Related Publications

F Santoro, and B Vandemeulebroucke, and M C Liebart, and A Capron
January 1987, Revista do Instituto de Medicina Tropical de Sao Paulo,
F Santoro, and B Vandemeulebroucke, and M C Liebart, and A Capron
January 1994, Revista do Instituto de Medicina Tropical de Sao Paulo,
F Santoro, and B Vandemeulebroucke, and M C Liebart, and A Capron
August 1984, European journal of immunology,
F Santoro, and B Vandemeulebroucke, and M C Liebart, and A Capron
January 1976, Revista do Instituto de Medicina Tropical de Sao Paulo,
F Santoro, and B Vandemeulebroucke, and M C Liebart, and A Capron
December 1997, The Southeast Asian journal of tropical medicine and public health,
F Santoro, and B Vandemeulebroucke, and M C Liebart, and A Capron
January 1988, Immunology,
F Santoro, and B Vandemeulebroucke, and M C Liebart, and A Capron
May 2012, Parasitology research,
F Santoro, and B Vandemeulebroucke, and M C Liebart, and A Capron
October 2006, Blood,
F Santoro, and B Vandemeulebroucke, and M C Liebart, and A Capron
January 1996, West African journal of medicine,
F Santoro, and B Vandemeulebroucke, and M C Liebart, and A Capron
February 1963, Nature,
Copied contents to your clipboard!