Localization of electron transport inhibition in plastoquinone reactions. 1982

W Haehnel, and A Trebst

Reduction kinetics of P700 following a short flash are measured in spinach chloroplasts after oxidation of the electron carriers between the two photoreactions by far-red light. Three features of the kinetics allow us to localize simultaneously inhibition at different sites between photoreaction II and the reducing site of plastoquinol. These are the initial lag, the halftime and the area under the transient of the P700 absorbance change, which indicate the electron transfer time from photoreaction II to the reducing site of plastoquinol, the rate of plastoquinol oxidation, and the number of electrons transferred to the special plastoquinone B functioning as secondary electron acceptor of photosystem II, respectively. As an additional diagnostic parameter for inhibition before and after the plastoquinone pool, the area under the transient of the P700 absorbance change is used after long flashes. This area is proportional to the amount of reduced plastoquinone as shown by the absorbance change at 265 nm. The effects of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) are compared with those of 2-bromo-4-nitrothymol, 2,4-dinitrophenyl ether of 2-iodo-4-nitrothymol, and Illoxan as representatives for new classes of inhibitors. While 2-halogeno-4-nitrothymols inhibit the reduction of plastoquinone similarly to DCMU, their diphenyl ether derivatives inhibit selectively the oxidation of plastoquinol.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D010971 Plastoquinone Polyunsaturated side-chain quinone derivative which is an important link in the electron transport chain of green plants during the photosynthetic conversion of light energy by photophosphorylation into the potential energy of chemical bonds. Plastoquinone-9,Plastoquinone 9
D011809 Quinones Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
D002734 Chlorophyll Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms. Phyllobilins,Chlorophyll 740
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron

Related Publications

W Haehnel, and A Trebst
September 1977, Archives of biochemistry and biophysics,
W Haehnel, and A Trebst
February 1973, Biochimica et biophysica acta,
W Haehnel, and A Trebst
February 1978, Biochimica et biophysica acta,
W Haehnel, and A Trebst
March 1967, The Journal of biological chemistry,
W Haehnel, and A Trebst
June 1973, Biochimica et biophysica acta,
W Haehnel, and A Trebst
December 1977, Plant physiology,
Copied contents to your clipboard!