The circulatory influences of vagal afferents at rest and during coronary occlusion in conscious dogs. 1978

V S Bishop, and D F Peterson

We studied the role of cardiopulmonary vagal afferents in the cardiovascular responses to coronary artery occlusion in conscious dogs with intact carotid sinuses and following functional denervation of the arterial baroreceptors. The contributions of vagal afferents were determined by cold blocking the vagi. In dogs with intact carotid sinuses, coronary artery occlusion produced small decreases in mean cardiac output and arterial pressure, whereas heart rate increased by 35 beats/min. In dogs with intact carotid sinuses, vagal cold block increased mean arterial pressure by 22 +/- 2 (mean +/- SE) mm Hg and heart rate by 90 +/- 6 beats/min. Mean cardiac output increased by 505 +/- 90 ml/min. With the exception of heart rate, responses to coronary occlusion during vagal cold block were similar to the occlusion response prior to vagal cold block. Furthermore, prior occlusion of the coronary artery did not significantly influence the responses to vagal cold block. After arterial baroreceptor denervation, coronary artery occlusion resulted in a substantially greater fall in systemic arterial pressure (-52 mm Hg as compared to -8 mm Hg, with intact carotid sinuses) and peripheral resistance decreased by -0.49 peripheral resistance units (PRU). Vagal cold block following denervation increased the arterial pressure by 49 +/- 10 mm Hg and peripheral resistance by 0.59 +/- 0.13 PRU. Both values were significantly greater than those observed during vagal cold block prior to denervation. In arterial baroreceptor-denervated dogs, vagal blockade significantly attenuated the response to coronary occlusion. Therefore, in conscious dogs, vagal afferents from cardiopulmonary receptors exert a significant inhibitory influence on the peripheral vascular tone. When the carotid sinuses are intact, this inhibitory influence appears to be marked during myocardial ischemia. In the absence of functional arterial baroreflexes, vagal afferent activity contributes to the depressor responses observed during ischemia.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009407 Nerve Block Interruption of NEURAL CONDUCTION in peripheral nerves or nerve trunks by the injection of a local anesthetic agent (e.g., LIDOCAINE; PHENOL; BOTULINUM TOXINS) to manage or treat pain. Chemical Neurolysis,Chemodenervation,Nerve Blockade,Block, Nerve,Blockade, Nerve,Blockades, Nerve,Blocks, Nerve,Chemical Neurolyses,Chemodenervations,Nerve Blockades,Nerve Blocks,Neurolyses, Chemical,Neurolysis, Chemical
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011311 Pressoreceptors Receptors in the vascular system, particularly the aorta and carotid sinus, which are sensitive to stretch of the vessel walls. Baroreceptors,Receptors, Stretch, Arterial,Receptors, Stretch, Vascular,Stretch Receptors, Arterial,Stretch Receptors, Vascular,Arterial Stretch Receptor,Arterial Stretch Receptors,Baroreceptor,Pressoreceptor,Receptor, Arterial Stretch,Receptor, Vascular Stretch,Receptors, Arterial Stretch,Receptors, Vascular Stretch,Stretch Receptor, Arterial,Stretch Receptor, Vascular,Vascular Stretch Receptor,Vascular Stretch Receptors
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

V S Bishop, and D F Peterson
January 1979, Respiration; international review of thoracic diseases,
V S Bishop, and D F Peterson
May 2002, Basic research in cardiology,
V S Bishop, and D F Peterson
February 1983, Acta orthopaedica Scandinavica,
V S Bishop, and D F Peterson
January 1977, Pflugers Archiv : European journal of physiology,
V S Bishop, and D F Peterson
May 1988, The American journal of physiology,
Copied contents to your clipboard!