Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. 1982

M Ito, and M Sakurai, and P Tongroach

1. In high decerebrate rabbits, cells were sampled extracellularly from the rostral flocculus. Purkinje cells were identified by their characteristic responses to stimulation of the contralateral inferior olive. Identification of basket cells was based on the absence of olivary responses and also on their location in the molecular layer adjacent to identified Purkinje cells. Mass field potentials in the flocculus were also studied.2. Single pulse stimulation of a vestibular nerve, either ipsilateral or contralateral, at a rate of 2/sec excited Purkinje cells with a latency of 3-6 msec. This early excitation represents activation through vestibular mossy fibres, granule cells and their axons (parallel fibres). Similar early excitation also occurred in putative basket cells.3. Conjunctive stimulation of a vestibular nerve at 20/sec and the inferior olive at 4/sec, for 25 sec per trial, effectively depressed the early excitation of Purkinje cells by that nerve, without an associated change in spontaneous discharge. The depression recovered in about ten minutes. This recovery was followed by the onset of a slow depression lasting for an hour.4. Conjunctive vestibular-olivary stimulation produced no such depression in the following responses: early excitation in Purkinje cells induced from the vestibular nerve not involved in the conjunctive stimulation; early excitation in putative basket cells from either vestibular nerve; inhibition or rebound facilitation in Purkinje cells following the early excitation; vestibular-evoked field potentials in the granular layer and white matter of the flocculus. These observations lead to the conclusion that the depression occurs specifically at parallel fibre-Purkinje cell synapses involved in conjunctive stimulation.5. Ionophoretic application of glutamate to Purkinje cells in conjunction with 4/sec olivary stimulation depressed the glutamate sensitivity of Purkinje cells; aspartate sensitivity was depressed to a much lesser degree. The depression diminished in about 10 min, but this recovery was succeeded by a slow depression lasting for an hour. The depression was seen only when glutamate sensitivity was relatively high, suggesting that the micro-electrode was impinging onto Purkinje cell dendrites. These observations suggest that subsynaptic chemosensitivity of Purkinje cells to the putative neurotransmitter of parallel fibres is involved in the depression observed after conjunctive stimulation of a vestibular nerve and the inferior olive.6. The present results are consistent with the Marr-Albus assumption concerning plasticity of cerebellar neuronal networks.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D009847 Olivary Nucleus A brainstem nuclear complex. in the hindbrain, also referred to as the olivary body. The olivary nuclear complex is a part of the MEDULLA OBLONGATA and the PONTINE TEGMENTUM. It is involved with motor control and is a major source of sensory input to the CEREBELLUM. Basal Nucleus, Olivary,Nucleus Basalis, Olivary,Olivary Body,Olivary Complex,Olivary Nuclei,Complex, Olivary,Nucleus, Olivary,Nucleus, Olivary Basal,Olivary Basal Nucleus,Olivary Bodies
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

M Ito, and M Sakurai, and P Tongroach
January 1983, Acta morphologica Hungarica,
M Ito, and M Sakurai, and P Tongroach
April 1977, Neuroscience letters,
M Ito, and M Sakurai, and P Tongroach
January 1988, The Journal of pharmacology and experimental therapeutics,
M Ito, and M Sakurai, and P Tongroach
April 1982, Brain research,
M Ito, and M Sakurai, and P Tongroach
September 2014, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
M Ito, and M Sakurai, and P Tongroach
May 1981, Journal of neurophysiology,
M Ito, and M Sakurai, and P Tongroach
September 1981, Neuroscience letters,
M Ito, and M Sakurai, and P Tongroach
April 1970, The Journal of physiology,
M Ito, and M Sakurai, and P Tongroach
January 1990, The European journal of neuroscience,
Copied contents to your clipboard!