Unusual compartmentation of precursors for nuclear and mitochondrial DNA in mouse L cells. 1982

R K Bestwick, and C K Mathews

Current evidence suggests that distinct mechanisms exist to regulate precursor synthesis for nuclear and mitochondrial DNA replication. We tested this is mouse L cells by asking whether nuclear and mitochondrial DNAs become labeled to equivalent specific activities when provided with an exogenous nucleic acid precursor. Cells were grown in [32P]orthophosphate-containing medium long enough to bring all pools to equivalent specific activities. [6-3H]Uridine was added to the medium as a general pyrimidine precursor. At intervals, cells were harvested and nuclear and mitochondrial DNA was isolated. After enzymatic hydrolysis of each DNA fraction to deoxyribonucleoside 5'-monophosphates, these were separated by high performance liquid chromatography and the 3H/32P ratio in each pyrimidine was determined as an index of the specific activity of DNA pyrimidine residues. The dTMP residues in nuclear and mitochondrial DNA reached roughly equal specific activities and at comparable rates. However, dCMP residues in mitochondrial DNA reached maximal specific activities more rapidly than those in nuclear DNA, and the maximal values attained were nearly twice those seen either with the nuclear DNA dCMP residues or in the dTMP residues from either DNA. This indicates that the pathways leading to dCTP synthesis are organized so that mitochondria can use exogenous precursors more effectively than can the nucleus. The nature of this compartmentation is not clear, but it evidently involves one or more steps beyond the divergence point between pathways to dCTP and dTTP.

UI MeSH Term Description Entries
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003838 Deoxyadenine Nucleotides Adenine nucleotides which contain deoxyribose as the sugar moiety. Deoxyadenosine Phosphates,Nucleotides, Deoxyadenine,Phosphates, Deoxyadenosine
D003845 Deoxycytosine Nucleotides Cytosine nucleotides which contain deoxyribose as the sugar moiety. Deoxycytidine Phosphates,Nucleotides, Deoxycytosine,Phosphates, Deoxycytidine
D003848 Deoxyguanine Nucleotides Guanine nucleotides which contain deoxyribose as the sugar moiety. Deoxyguanosine Phosphates,Nucleotides, Deoxyguanine,Phosphates, Deoxyguanosine
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

R K Bestwick, and C K Mathews
May 1977, Canadian journal of biochemistry,
R K Bestwick, and C K Mathews
March 1972, Journal of cell science,
R K Bestwick, and C K Mathews
March 1986, The Biochemical journal,
R K Bestwick, and C K Mathews
February 1972, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
R K Bestwick, and C K Mathews
September 1989, Journal of molecular recognition : JMR,
R K Bestwick, and C K Mathews
March 1972, Proceedings of the National Academy of Sciences of the United States of America,
R K Bestwick, and C K Mathews
December 1975, Journal of molecular biology,
R K Bestwick, and C K Mathews
November 1982, British journal of haematology,
R K Bestwick, and C K Mathews
May 1978, The Journal of biological chemistry,
Copied contents to your clipboard!