Mechanism of action of alpha-melanocyte-stimulating hormone in rat preputial glands: the role of androgen metabolism. 1982

J B Hay, and D Meddis, and A J Thody, and S Shuster

The metabolism of testosterone and 5 alpha-dihydrotestosterone has been studied in vitro in preputial glands of posterior hypophysectomized, totally hypophysectomized and control sham-operated rats. The level of C19 steroid 5 alpha-reductase activity/unit of preputial gland DNA did not fall after removal of the neurointermediate lobe and rose after total hypophysectomy. It was concluded from this that the androgen unresponsiveness of the preputial glands of hypophysectomized rats was not due to a near-total lack of 5 alpha-reductase and hence that the combined synergistic action of testosterone and alpha-melanocyte-stimulating hormone (alpha-MSH) on preputial gland activity was unlikely to be due to an alpha-MSH-mediated restoration of 5 alpha-reductase levels in hypophysectomized rats. Levels of 3 alpha and 3 beta-hydroxysteroid dehydrogenase but not of 17 beta-hydroxysteroid dehydrogenase appeared to be altered by hypophysectomy.

UI MeSH Term Description Entries
D007016 Hypophysectomy Surgical removal or destruction of the hypophysis, or pituitary gland. (Dorland, 28th ed) Hypophysectomies
D008297 Male Males
D009074 Melanocyte-Stimulating Hormones Peptides with the ability to stimulate pigmented cells MELANOCYTES in mammals and MELANOPHORES in lower vertebrates. By stimulating the synthesis and distribution of MELANIN in these pigmented cells, they increase coloration of skin and other tissue. MSHs, derived from pro-opiomelanocortin (POMC), are produced by MELANOTROPHS in the INTERMEDIATE LOBE OF PITUITARY; CORTICOTROPHS in the ANTERIOR LOBE OF PITUITARY, and the hypothalamic neurons in the ARCUATE NUCLEUS OF HYPOTHALAMUS. MSH,Melanocyte Stimulating Hormone,Melanocyte-Stimulating Hormone,Melanophore Stimulating Hormone,Melanotropin,MSH (Melanocyte-Stimulating Hormones),Melanophore-Stimulating Hormone,Hormone, Melanocyte Stimulating,Hormone, Melanocyte-Stimulating,Hormone, Melanophore Stimulating,Melanocyte Stimulating Hormones,Stimulating Hormone, Melanocyte,Stimulating Hormone, Melanophore
D010413 Penis The external reproductive organ of males. It is composed of a mass of erectile tissue enclosed in three cylindrical fibrous compartments. Two of the three compartments, the corpus cavernosa, are placed side-by-side along the upper part of the organ. The third compartment below, the corpus spongiosum, houses the urethra. Glans Penis,Penis, Glans
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012627 Sebaceous Glands Small, sacculated organs found within the DERMIS. Each gland has a single duct that emerges from a cluster of oval alveoli. Each alveolus consists of a transparent BASEMENT MEMBRANE enclosing epithelial cells. The ducts from most sebaceous glands open into a HAIR FOLLICLE, but some open on the general surface of the SKIN. Sebaceous glands secrete SEBUM. Gland, Sebaceous,Glands, Sebaceous,Sebaceous Gland
D013196 Dihydrotestosterone A potent androgenic metabolite of TESTOSTERONE. It is produced by the action of the enzyme 3-OXO-5-ALPHA-STEROID 4-DEHYDROGENASE. 5 alpha-Dihydrotestosterone,Androstanolone,Stanolone,17 beta-Hydroxy-5 beta-Androstan-3-One,17beta-Hydroxy-5alpha-Androstan-3-One,5 beta-Dihydrotestosterone,5-alpha Dihydrotestosterone,5-alpha-DHT,Anaprotin,Andractim,Dihydroepitestosterone,Gelovit,17 beta Hydroxy 5 beta Androstan 3 One,17beta Hydroxy 5alpha Androstan 3 One,5 alpha DHT,5 alpha Dihydrotestosterone,5 beta Dihydrotestosterone,Dihydrotestosterone, 5-alpha,beta-Hydroxy-5 beta-Androstan-3-One, 17
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone

Related Publications

J B Hay, and D Meddis, and A J Thody, and S Shuster
March 1975, The Journal of endocrinology,
J B Hay, and D Meddis, and A J Thody, and S Shuster
July 1981, The Journal of endocrinology,
J B Hay, and D Meddis, and A J Thody, and S Shuster
November 2003, Zhonghua er ke za zhi = Chinese journal of pediatrics,
J B Hay, and D Meddis, and A J Thody, and S Shuster
December 1989, Journal of neuroendocrinology,
J B Hay, and D Meddis, and A J Thody, and S Shuster
August 1992, Journal of molecular endocrinology,
J B Hay, and D Meddis, and A J Thody, and S Shuster
December 1995, Neuroscience letters,
J B Hay, and D Meddis, and A J Thody, and S Shuster
January 2000, Sheng li ke xue jin zhan [Progress in physiology],
J B Hay, and D Meddis, and A J Thody, and S Shuster
January 1976, Biochemical Society transactions,
J B Hay, and D Meddis, and A J Thody, and S Shuster
June 1997, The American journal of physiology,
Copied contents to your clipboard!